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Explainable AI in Medicine, Confidence Intervals and Warnings 

 

 

Yiannos S. Tolias* 

 

Abstract: 

The advancements in artificial intelligence (AI) have created a promising potential to 

revolutionize a number of domains including healthcare. These rapid developments in AI 

led policy makers and legal scholars to also look at AI legal implications. In addressing 

any legal implications, it is first necessary to understand the technical character of AI and 

specifically the branch of AI that deals with machine learning (ML). This understanding 

enables us to identify any new risks and/or safety concerns that differentiate ML systems 

from other conventional products and services. If such new risks and concerns exist then 

a differentiated legal treatment for ML systems could be justified. This paper focuses on 

ML liability in medicine and particularly on warnings. In this regard, the crux of the 

matter concerning ML systems performing medical tasks, such as diagnosis, is the type of 

information (warning) that a manufacturer/ML medical system should be providing to 

the physician. The physician would be acting as a learned intermediary and the 

manufacturer would be held to the standard of an expert in the field. The 

manufacturer/ML medical system should be providing information concerning the ML 

medical prediction to the physician in a manner suitable for her expertise that would 

enable the physician to provide appropriate explanations to the patient in order to obtain 

the patient’s informed consent. This paper sets the foundations for a correlation between 

explainable ML, ML confidence intervals and warnings. 

                                                       
* Senior Emile Noël Global Fellow - The Jean Monnet Center, NYU School of Law and lawyer at the 
European Commission. I am grateful to Mark Geistfeld for the long and inspiring discussions we had on 
these issues, for all his comments on my project and support as well as for his brilliant classes on Products 
Liability and Tort. I am also grateful to Cem M. Deniz, Rajesh Ranganath and Narges Razavian, for the 
exciting discussions we had on machine learning and for their stimulating classes on Deep Learning in 
Medicine, Machine Learning for Healthcare and Deep Learning in Medicine respectively. I would also like 
to thank Gráinne De Búrca and Joseph Weiler for sharing their great ideas with me on how to develop this 
project and for the amazing research environment at The Jean Monnet Center. Additionally, many thanks 
to Catherine Sharkey for her excellent comments on legal issues related to this project. Moreover, I would 
like to warmly thank Claudia Golden for her superb support at The Jean Monnet Center. The views 
expressed are personal, do not necessarily represent the official position of the European Commission and 
any errors are attributable to me alone. All comments are welcomed at Yiannos.Tolias@ec.europa.eu.  
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1. Introduction  

 

The advancements in artificial intelligence (AI) and particularly in machine learning (ML) 

have created a promising potential to revolutionize a number of domains including 

healthcare. There is no generally accepted definition of AI.1  Scholars in legal and social 

sciences literature often criticize algorithms but few have considered in much depth their 

mathematical design.2 Additionally, we see that AI poses specificities in some domains. 

Within this labyrinthic environment, many legislatures around the world have 

undertaken the challenging task to examine the legal, ethical, social and economic 

implications of AI.3 In the course of these examinations, there were a number of novel 

questions posed, for example, whether there is a need for creating a “specific legal status 

for robots.”4  

 

This paper focuses on ML liability in medicine and particularly on warnings.5  One of the 

underlying legal issues in this respect is whether existing legal frameworks on liability are 

fit for the development and deployment of AI. In addressing this issue, it is first necessary 

to understand the technical character of AI, specifically the branch of AI that deals with 

machine learning (ML). It is important to understand how a ML system carries out 

intelligent tasks, such as medical diagnosis, that have traditionally required human 

                                                       
1 House of Lords Select Committee on Artificial Intelligence, AI in the UK: ready, willing and able?(2018), 
available at https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf.; JANET FINLAY & 

ALAN DIX, AN INTRODUCTION TO ARTIFICIAL INTELLIGENCE 1  (UCL Press. 1996).  
2 Jenna  Burrell, How the machine ‘thinks’: Understanding opacity in machine learning algorithms, 3 BIG 

DATA & SOCIETY, 2 (2016). 
3 For example, see European Parliament, European Parliament resolution of 16 February 2017 with 
recommendations to the Commission on Civil Law Rules on Robotics(2017), available at 
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P8-TA-2017-
0051+0+DOC+XML+V0//EN#BKMD-12.; House of Lords Select Committee on Artificial Intelligence. 
2018.; Congressional  Artificial Intelligence Caucus, available at https://artificialintelligencecaucus-
olson.house.gov. 
4 European Parliament, European Parliament resolution of 16 February 2017 with recommendations to 
the Commission on Civil Law Rules on Robotics(2017). 
5 In a public consultation carried out by the European Parliament on artificial intelligence, 74% of the 
respondents considered “liability rules” as the second most important concern regarding regulation 
purposes (see European Parliament, European Parliament resolution of 16 February 2017 with 
recommendations to the Commission on Civil Law Rules on Robotics(2017)). As Geistfeld notes in the 
autonomous vehicles context, the liability question is the most important source of legal uncertainty 
manufacturers currently face and that eliminating this uncertainty and costs it would facilitate the safe 
deployment of autonomous vehicles (Mark A Geistfeld, A Roadmap for Autonomous Vehicles: State Tort 
Liability, Automobile Insurance, and Federal Safety Regulation, 105 CALIF. L. REV., 1684 (2017).). 
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intelligence. This understanding enables us to identify whether there are any new risks 

and/or safety concerns that differentiate ML systems from other conventional products 

and services. If such differences exist, it could then justify a differentiated legal treatment 

for ML systems. This paper explores specificities of ML in the medical domain. 

Considering these specificities, the crux of matter for ML systems performing medical 

tasks, such as diagnosis, concerns the type of information (warning) that the ML 

manufacturer should be providing to the physician. 

 

In carrying out this analysis, first, the paper identifies what distinguishes a conventional 

medical device from a ML system in medicine. It concludes that a fundamental distinction 

is that a conventional medical device, in effect, carries out mechanically based tasks 

whereas a ML medical system is carrying out a task that has been traditionally perceived 

as requiring human intelligence and decision making. But what is intelligence and how 

do machines learn to become intelligent? This paper looks deeper into these issues in 

order to identify any distinct risks in AI decision making in medicine. It reaches the 

conclusion that ML medical systems have some characteristics similar to human learning 

and intelligence and this encompasses novel legal challenges. It is this intelligent behavior 

of ML systems that renders the quest for designing adequate legal frameworks and 

warnings more challenging.  

 

As explained in this paper there are technical and legal specificities in developing and 

deploying ML in medicine compared to other domains. Considering the specificities of 

the medical domain, the crux of matter for ML systems performing medical tasks, such as 

diagnosis, concerns the type of information (warning) that a manufacturer should be 

providing to the physician. In this regard, the physician would be acting as a learned 

intermediary and that the manufacturer would be held to the standard of an expert in the 

field.6 The manufacturer should be providing information (warning) concerning the ML 

medical prediction to the physician in a manner appropriate for her expertise that would 

allow the physician to obtain the patient’s informed consent.7 After the physician is given 

                                                       
6 Point raised by Mark Geistfeld (NYU Law School) in a discussion we had on this subject. 
7 Id. 
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an adequate warning appropriate for her expertise, she would then be able to combine it 

with her expert knowledge and then “translate” this information for the patient in her 

verbal explanation in order to obtain the patient’s informed consent.8     

 

In the quest of identifying the type of information that a manufacturer of a ML system 

should be providing to the physician, the paper takes step backwards and examines the 

doctrinal reasons behind the existence of warnings for conventional products. This 

examination aims to find out why do we need warnings accompanying products? What 

are the basic elements that need to be considered and balances that need to be struck in 

formulating adequate warnings? What should constitute a waring defect that would 

ensure that both innovation and consumer protection are safeguarded? What type of 

information should a warning encompass that would allow the consumer to make an 

informed choice on whether or not to use a particular product? How do warnings expose 

and explain risks associated with the functioning of conventional (not based on AI) 

products to consumers? Understanding the doctrinal mechanism behind warnings for 

conventional products allows us to understand the type of warning mechanism that would 

be more suitable for ML in medicine. Warning defects play a fundamental role in products 

liability litigation concerning medical devices and pharmaceuticals and this provides 

inspiration to identify the type of warning that could be fit for ML in medicine. 

 

Finally, in the course of this assessment, this paper raises a widely discussed subject 

within the ML community, especially in relation to AI in healthcare, namely explainable 

AI. Explainable AI refers to AI that is able to provide some explanations for its predictions. 

This is an emerging topic that is currently the subject of substantial research by the ML 

community. The paper introduces the concept of explainable AI and indicates how 

explainable AI systems could be providing necessary and useful information to physicians 

and patients. It sets the foundations for a correlation between explainable ML, ML 

confidence intervals and warnings. This correlation would be further developed in 

another paper.  This study does not seek to put forward a specific proposal on how to 

                                                       
8 Id. 
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resolve the challenge concerning ML medical warnings it rather aims to discuss trade-offs 

between various feasible solutions.    

 

2. What is intelligence and how do machines perform medical tasks?   

 

It may be wondered at the outset what fundamentally distinguishes a conventional 

medical device, such as a magnetic resonance imaging machine (MRI), from a ML9 

medical system.10 A fundamental difference is that a magnetic resonance imaging 

machine provides a physical measurement, such as images of an organ, by measuring 

signals generated from protons in tissues containing water molecules. In contrast, a ML 

medical device tries to interpret this physical measurement and draw inferences and 

predictions about the latent cause of the measurement such as the presence of a life-

threatening tumor. In other words, the ML system is carrying out a task that has been 

traditionally perceived as requiring human intelligence and decision making.11 

Consequently, as explained in this paper, a new relationship appears to be formed 

between the AI system, the physician and the patient. But what is intelligence and how do 

machines become intelligent?   

 

As early as 1955, a proposal was made for the Dartmouth summer research project on 

artificial intelligence to carry out a 2-month study on artificial intelligence based on the 

assumption that “every aspect of learning or any other feature of intelligence can in 

principle be so precisely described that a machine can be made to simulate it.”12 More 

than sixty years later, artificial intelligence is a thriving field with lots of practical 

applications.13 However, it still remains a challenge for AI to solve tasks that people easily 

                                                       
9 As explained below ML is one of the branches of AI.  
10 Such as, the first one approved by the U.S. Food and Drug Administration (FDA) to detect the eye disease 
diabetic retinopathy; see FDA press release - FDA permits marketing of artificial intelligence-based device 
to detect certain diabetes-related eye problems  (April 11, 2018). 
11 In this context, as Friedler et al also note machine learning systems carry out many of the decision-making 
activities that used to be done by humans, such as, credit ratings for loans, find patterns, assist in decisions 
that have significant impact on our lives and take decisions in the course of criminal proceedings; see Sorelle 
A. Friedler, et al., On the (im)possibility of Fairness, ARXIV.ORG/PDF/1609.07236.PDF, 1 (2016). 
12 John  McCarthy, et al., A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, 
August 31, 1955, 27 AI MAGAZINE (2006). 
13 IAN GOODFELLOW, et al., DEEP LEARNING 1  (MIT Press. 2016). 
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can perform but hard for them to precisely describe – problems that people solve 

intuitively such as recognizing faces in images and spoken words.14  

 

Sejnowski argues that intelligence, like consciousness, are hard to define.15 As he points 

out, scholars have written more on intelligence than any other subject in psychology after 

consciousness.16 Psychologists since the 1930s, draw a distinction between two types of 

intelligence namely fluid intelligence and crystallized intelligence.17 The former, uses 

reasoning and pattern recognition when faced with new situations in order to solve new 

problems without depending on previous knowledge, whereas the later, depends on 

previous knowledge.18 Fluid intelligence relates to a developmental trajectory, reaching a 

peak in young adulthood and decreases with age, whereas crystalized intelligence, 

increases with age.19 Fluid intelligence encompasses inductive reasoning and deductive 

reasoning.20 There are different categories of reasoning including induction, abduction 

and deduction.21 Reasoning is the ability to rely on existing knowledge to draw 

conclusions or infer something new about a particular field.22 Without the ability to 

reason one simply recalls accumulated information.23 Reasoning is particularly useful 

when knowledge is unreliable or incomplete.24  

  

Inductive reasoning is particularly useful in machine learning.25 Finlay and Dix 

summarize inductive reasoning as “generalization from cases seen to infer information 

about new cases unseen”.26 Inductive reasoning or inductive inference encompasses the 

                                                       
14 Id.; In this regard, see also Sejnowski who argues that computers can now recognize objects in images 
almost as well as most adults can and there are computerized vehicles that drive themselves more safely 
than an average sixteen-year-old could (TERRENCE J. SEJNOWSKI, THE DEEP LEARNING REVOLUTION 3  (The 
MIT Press. 2018).).    
15 SEJNOWSKI,  20. 2018. 
16 Id. 
17 Id. 
18 Id. 
19 Id. Sejnowski points out that for example AlphaGO demonstrates both crystalized and fluid intelligence 
in a limited domain.    
20 https://en.wikipedia.org/wiki/Fluid_and_crystallized_intelligence 
21 FINLAY & DIX,  31. 1996. 
22 Id. 
23 Id. 
24 Id. 
25 Id. at, 33. 
26 Id. at, 32. 
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ability to use specific examples or observations to draw broader generalizations that allow 

one to successfully predict the label (category) of unseen information.27 For example, we 

infer that all crows are black because every crow we see is black and thus inductive 

reasoning could be unreliable.28 However, inductive reasoning is very useful and is the 

foundation of much of our learning.29 A successful learner should be able to develop 

specific examples to broader generalization and hence why inductive reasoning or 

inductive inference is crucial to our learning.30 In machine learning, the term 

generalization denotes how well a machine learning model can apply what it learned 

during its learning period to new cases that has never seen before. It is a core challenge 

in machine learning that algorithms must perform well on new previously unseen inputs 

and not just on those that the model was trained.31 This type of learning should be 

contrasted to “learning by memorization” that lacks a fundamental element of learning 

systems namely the ability to label (categorize) unseen information.32 The terms 

overfitting and underfitting that are explained below are used in machine learning to 

indicate how well the model learns and generalizes to new data.33  

 

Shalev-Shwartz and Ben-David also explain how inductive reasoning could sometimes 

lead to false conclusions. They use the so called ‘superstition’ in the pigeon experiment 

carried out by psychologist B.F.Skinner and published in 1948 to demonstrate the 

problem with inductive reasoning.34 In this experiment, food was delivered to a group of 

hungry pigeons at regular intervals. When the food was first delivered the pigeons were 

engaged in some random activity (pecking, turning head etc.)35 The pigeons developed a 

superstitious behavior believing that the random activity that they were engaged in when 

food was first delivered was associated to the delivery of food. Consequently, they 

                                                       
27 Shai Shalev-Shwartz & Shai Ben-David, Understanding Machine Learning : From Theory to Algorithms, 
2 (2014). 
28 FINLAY & DIX,  32. 1996. 
29 Id. 
30 Shalev-Shwartz & Ben-David, 2 (2014). 
31 GOODFELLOW, et al.,  108. 2016. 
32 Shalev-Shwartz & Ben-David, 2 (2014). 
33 Jason  Brownlee, Overfitting and Underfitting With Machine Learning Algorithms(2016), available at 
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/. 
These concepts are further explained below.  
34 B. F. Skinner, ‘Superstition' in the pigeon, 38 JOURNAL OF EXPERIMENTAL PSYCHOLOGY (1948). 
35 Shalev-Shwartz & Ben-David, 2 (2014). 
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continued to perform this useless activity believing that food would arrive. They ask what 

distinguishes the learning mechanisms that result in superstition from useful learning. 

The answer to this question is also fundamental to the development of automated 

learners. Shalev-Shwartz and Ben-David explain that human learners can rely on 

common sense to filter out random meaningless learning conclusions. Consequently, 

when the task of leaning is carried out by a machine one should provide well defined 

principles that will shield the program from reaching useless or senseless conclusions.36  

 

They contrast the useful learning mechanism of rats that helps them avoid poisonous 

baits with the meaningless reasoning of pigeons. When rats come across food with novel 

smell or look they will initially eat a very small amount. If the food produces an ill effect 

namely nausea, the rat negatively labels it, and if it encounters this food in the future it 

will predict that this food will also have an ill effect and hence not eat it.37 They refer to 

experiments carried out by Garcia and Koelling to identify why the rats’ learning 

mechanism is more effective than that of the pigeons. In this experiment electric shocks 

were artificially inflicted on the rats following the consumption of particular food. 

Interestingly, the rats did not draw a correlation between electric shocks and that 

particular food. Thus, the rats were not avoiding that food when later encountering it. 

Similarly, the rats did not draw any correlations between sounds leading to nausea. As 

they highlight the rats appear to have some “built in” prior knowledge instructing them 

that, while temporal correlation between food and nausea can be causal, it is improbable 

that there would be a causal relationship between food consumption and electric shocks 

or between sounds and nausea.38 They argue that the distinguishing feature between the 

rats’ learning mechanism and the pigeons’ learning mechanism is the incorporation of 

prior knowledge that biases the learning mechanism. This is what is referred to as 

inductive bias. Similarly, the incorporation of prior knowledge, biasing the learning 

process is inevitable to successfully design a learning algorithm and this is what is known 

as the “No-Free-Lunch theorem” that is examined below. 39  

                                                       
36 Id. 
37 Id. at, 1. 
38 Id. at, 3. 
39 Id. 
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What the above analysis shows, is that some form of bias, which could take the form of 

common sense for humans, is necessary for a successful learning process. It is also evident 

that the human learning mechanism as well as certain animal’s successful learning 

mechanisms have inherent biases. These human and animal biases could be even possibly 

genetic ones that developed through evolution. In this respect, Shalev-Shwartz and Ben-

David explain that the development of tools that express domain expertise, translating it 

into learning bias and quantifying the impact of this bias on the success of learning is a 

core aspect of the theory of machine learning.40 They underline that the stronger the prior 

knowledge (or prior assumptions) that one starts the learning process with, the more 

successful it is to learn from further examples. However, they emphasize that the stronger 

these prior assumptions are the more rigid the learning is. Thus, there appears to be a fine 

line between strong prior assumptions that lead to more successful learning and rigidity 

in learning. Once this fine line is set, the initial question that appears to emerge is whether 

the machine learning algorithm’s inductive bias has any distinct characteristics compared 

to human bias such as human common sense. The answer to this question would also 

determine whether there are any practical implications in the algorithm’s medical 

prediction, for example, how it prioritizes patients in an intensive care unit.  If there are 

distinct implications, then the next question is to identify a type of legal framework that 

is more appropriate for these algorithms. These issues will be further examined below.  

 

As we have seen above, reasoning is a core element of learning and intelligence.41 In 

addition to the types of reasoning noted above, reasoning can also progress in two 

directions – forward to the goal or backwards from the goal.42 Both are used in AI 

depending on the circumstances.43 In cases, like medicine, where the goal or hypothesis 

could sometimes be easily generated and where the physician wishes to have information 

(problem data) in order to proof or disproof a hypothesis, backward reasoning would be 

most likely applicable.44 On the other hand, in cases where the problem data is given but 

                                                       
40 Id. 
41 FINLAY & DIX,  31. 1996. 
42 Id. at, 33. 
43 Id. 
44 Id. at, 34. 
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the goal is unknown or there are many different possible goals, forward reasoning would 

be useful.45  

 

Sometimes, knowledge is incomplete or changing and this requires reasoning methods 

that can deal with uncertainty.46 Almost all activities necessitate some ability to reason in 

the presence of uncertainty.47 In fact, save mathematical statements that are true by 

definition, it is hard to contemplate of any proposition that is absolutely true or any event 

that is absolutely guarantee to occur.48 Goodfellow et al point out, that while it should be 

clear that we need a way of representing and reasoning about uncertainty, it is not evident 

that probability theory can deliver all the requisite tools for machine learning 

applications.49 As they indicate, probability theory was developed to analyze the 

frequencies of events. For example, probability theory can be applied to study events like 

drawing a certain hand of cards in a poker game. These types of events are usually 

repeatable. They explain that, when we say that an outcome has a probability p of 

occurring, it means that if we were, for example, to be infinitely drawing a hand of cards, 

then a proportion p of the repetitions would result in that outcome. However, as they 

highlight, this type of reasoning does not appear immediately applicable to propositions 

that are not repeatable. Usefully for the purposes of this paper, they use the example of a 

physician who tells a patient that she has a 40 percent chance of having a flu. This, they 

point out, means something very different as we cannot make infinite replicas of the 

patient, nor there is a reason to assume that different replicas of the patient would present 

with the same symptoms yet have varying underlying conditions. In this respect, they 

distinguish between two types of probability namely frequentist probability and Bayesian 

probability. Frequentist probability relates to the rates at which events occur such as 

drawing a certain hand of cards in a poker game. Bayesian probability relates to the 

qualitative levels of certainty such as in the case where the physician diagnoses a patient. 

In this case, probability represents a degree of belief with 1 denoting absolute certainty 

                                                       
45 Id. 
46 Such as non-monotonic reasoning, probabilistic reasoning, reasoning with certainty factors and fuzzy 
reasoning; there two more methods of reasoning namely reasoning by analogy and case-based reasoning; 
See further explanations, id. at, 34-43. 
47 GOODFELLOW, et al.,  52. 2016. 
48 Id. 
49 Id. at, 53. 
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that the patient has flu and 0 denoting absolute certainty that patient does not have flu. 

They explain that if one lists several properties that we expect common sense reasoning 

to have about uncertainty then the only way to satisfy those properties is to treat Bayesian 

probabilities as behaving in the exact same way as frequentists probability.50 Concluding, 

they state that probability can be perceived as the extension of logic to deal with 

uncertainty. As they note, probability theory provides formal rules for determining the 

likelihood of a proposition being true given the likelihood of other propositions.51      

 

The ability to successfully deal with uncertainty, is sometimes also useful in the medical 

domain, such as in intensive care units (ICU) as discussed below. Machine learning is 

useful to the kind of problems for which encoding an explicit logic of decision-making 

performs very poorly.52 Machine learning is dealing with uncertain quantities and at times 

stochastic (nondeterministic) quantities.53 In contrast to a number of branches of 

computer science that mainly deal with entities that are completely deterministic and 

certain.54  

 

3. Introducing machine learning  

 

As noted at the outset, there is no generally accepted definition of AI.55 Be that as it may, 

machine learning is one of the branches of AI and in fact the most widely used technique 

in developing AI. 

 

                                                       
50 See for more explanations on this conclusion id. at, 53-54.  
51 Id. at, 54. 
52 Burrell, BIG DATA & SOCIETY, 6 (2016). 
53 GOODFELLOW, et al.,  52. 2016. 
54 Id. 
55 There are a number of definitions provided. For example, the House of Lords (House of Lords Select 
Committee on Artificial Intelligence,  14. 2018.) adopted the one used by the UK Government in its 
Industrial Strategy White Paper that defines AI as “Technologies with the ability to perform tasks that would 
otherwise require human intelligence, such as visual perception, speech recognition, and language 
translation” (Energy and Industrial Strategy, Industrial Strategy: Building a Britain fit for the future  37 
(Department for Business ed.,   2017). The European Commission in its Communication on Artificial 
Intelligence for Europe adopted the following definition “Artificial intelligence (AI) refers to systems that 
display intelligent behaviour by analyzing their environment and talking actions – with some degree of 
autonomy – to achieve specific goals” (Communication from the Commission to the European Parliament, 
the European Council, the Council, the European Economic and Social Committee and the Committee of 
the Regions, Artificial Intelligence for Europe. (2018).).   
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Goodfellow et al define machine learning as “essentially a form of applied statistics with 

increased emphasis on the use of computers to statistically estimate complicated 

functions and a decreased emphasis on proving confidence intervals around these 

functions.”56 They describe a machine learning algorithm as an algorithm that is able to 

learn from data.57 As to the meaning of leaning in the context of machine learning, they 

reiterate the neat definition provided by Tom Mitchell in 1997: 

 

“A Computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E.”           

 

They provide helpful explanations to the above definition that are useful to summarize in 

order to set the foundations in machine learning before embarking into analyzing the 

limitations and legal implications of machine learning systems in medicine.58   

 

Regarding, the task T, they explain that machine learning helps us to deal with tasks that 

are too difficult to solve with fixed programs written and designed by humans. They point 

out that the process of learning itself is not the task. Learning is the means of acquiring 

ability to perform the task. Machine learning tasks are often described in terms of how a 

machine learning system should process a collection of features that have been 

quantitatively measured from some event or object that we want the machine learning 

system to process.59   

 

                                                       
56 GOODFELLOW, et al.,  96. 2016. 
57 Id. at, 97. See further as to what constitutes machine learning: Sejnowski, who notes that learning 
algorithms instead of being told how to see or drive they learn from experience. As he points outs, data are 
the new oil, and learning algorithms are refineries that extract information from raw data (SEJNOWSKI,  3. 
2018.). Shalev-Shwartz and Ben-David explain that machine learning refers to the automated detection of 
meaningful patterns in data. They also note that machine learning tools are related to programs with the 
ability to learn and adapt. They note that machine learning is extensively used in scientific applications such 
as bioinformatics, medicine and astronomy (Shalev-Shwartz & Ben-David, xv (2014).) 
58 GOODFELLOW, et al.,  97-105. 2016. 
59 Id. at, 97. They explain that a number of tasks can be solved with machine learning including 
classification, classification with missing inputs (e.g. in medical diagnosis where many medical tests are 
expensive or invasive), annotation of the locations of roads in aerial photos, and machine translation.     
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As to the performance measure P, in order evaluate the abilities of a machine learning 

algorithm one should design a quantitative measure of the performance of this 

algorithm.60  As they point out, normally this performance measure P specifically relates 

to the task T that is carried out by the system. They add that measuring the accuracy of 

the model refers to the proportion of examples for which the model produces the correct 

output. Alternatively, they note, that one can obtain equivalent information by measuring 

the error rate. They also explain that what normally interests one is how well the machine 

learning algorithm performs on data that it has not seen before as this will indicate how 

well it will perform when deployed in the real world. This evaluation takes place on the 

basis of a test set of data that is different from the data used for training the machine 

learning system.61 They make an interesting observation that it might also have legal 

implications. The choice of performance measure might seem easy and objective but is 

frequently difficult to choose a performance measure that corresponds well to the desired 

behavior of the system.62 The reason for this challenge is sometimes the difficulty of 

deciding what should be measured.63 It thus appears that a machine learning algorithm 

might be presented as highly accurate on the basis of what was chosen to measure. 

Especially, in the medical domain where sometimes the aimed targets might not be clear, 

physicians might have different targets and/or patients’ different expectations, these 

accuracy rates might be to a certain extent misleading.  

 

Regarding the experience E, machine learning algorithms can generally fall under the 

categories of supervised or unsupervised depending on the type of experience that are 

allowed to have during the learning process.64 Similarly, many of the human skills are 

acquired or refined though learning from our experience rather than following precise 

instructions given to us.65    

 

                                                       
60 Id. at, 101-102. 
61 Id. at, 102. 
62 Id. 
63 Id. 
64 Id. 
65 Shalev-Shwartz & Ben-David, xv (2014). 
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Thus, machine learning at its current stage of evolution has at least some similarities to 

human learning and some dissimilarities to conventional products which rely on 

mechanical processes to perform tasks and/or fixed programs written by humans. 

Machine learning algorithms can be used to perform tasks that are traditionally 

performed by humans such as driving, speech recognition and image understanding.66 

Even more interesting, machine learning can perform tasks that exceed human 

capabilities. For example, the ability to learn to draw meaningful patterns from big and 

complex data sets seems to be very promising especially in the medical domain. 67 As Price 

argues, in the context of genetic testing and other “omics” technologies,68 beyond the 

relatively simple links that can be explicitly labelled and comprehended, the observance 

or use of a number of complex relationships necessitate different type of algorithmic tools, 

what he calls “black-box algorithms”.69 Another distinct characteristic of a machine 

learning algorithm is that it can adapt to changes in the environment that they interact 

with.70   

 

A machine learning algorithm generally includes two parallel operations or two distinct 

algorithms: a “classifier” and a “learner.”71 Classifiers receive the input (known as a set of 

“features”) and produce an output (a “category”).72 For example, a machine learning 

algorithm that performs diagnosis may receive the input such as, symptoms or clinical 

                                                       
66 Id. at, 3. 
67 See id. at, 4. 
68 Such as, testing of large panels of metabolites, gene expression levels, and protein levels. 
69 In the medical domain, he explains that in order “to discover new complex relationships black-box 
medicine relies on computer systems that improve their performance over time by trying a certain solution, 
evaluating the outcome, and then modifying that solution accordingly to improve future outcomes”; as to 
what constitutes “black-box medicine,” he notes that first, the information used to develop the relationships 
and predictions is based on a large set of information; secondly, the predictions are based on complex 
connections between patient characteristics and anticipated treatments without understanding or 
identifying the underlying connections; finally, the relationships generally cannot be confirmed through 
clinical trials. See further, W. Nicholson II Price, Black-Box Medicine 28 HARV. J. L. & TECH. 419, 429-432 
(2015). 
70 Shalev-Shwartz & Ben-David, 4 (2014). 
71 Burrell, BIG DATA & SOCIETY, 5 (2016). 
72 Id. 
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presentations, and produce a disease diagnosis as output.73 However, the machine 

learning algorithms known as the learners must first train on test data.74 

 

As we have seen, humans learn from experience rather than following specific 

instructions given to them. This type of learning also very much characterizes machine 

learning. As we have also seen, machine learning methods are largely divided into 

supervised and unsupervised learning algorithms.75  Unsupervised learning algorithms 

process data without labels (i.e. without human categorization of the particular data) and 

are trained to discover patterns.76  

   

4. How is machine learning used in medicine? 

    

Healthcare is a domain where machine learning techniques could have a great impact 

hence the great momentum for research in deploying machine learning algorithms in this 

domain. Machine learning in medicine could be enhancing personalized medicine to 

make predictions and treatment recommendations by identifying complex, implicit 

biological relationships from large heath datasets.77  Ghassemi et al. identify three main 

categories where machine learning could provide great healthcare opportunities: 

automating clinical tasks,78 providing clinical support79 and expanding clinical 

capacities.80 In pursuing such objectives, machine learning could for example have a 

                                                       
73 Id. at, 5. 
74 It is important to point out that this refers to the machine learning approach called “supervised” learning; 
id. 
75 G. Litjens, et al., A survey on deep learning in medical image analysis, 42 MED IMAGE ANAL, 62 (2017). 
76 Id. 
77 W. Nicholson II Price, Describing Black-Box Medicine 21 B.U. J. SCI. & TECH L.  347, 349 (2015). 
78 Automating clinical tasks during diagnosis and treatment (automating medical image evaluation and 
automating routine processes). 
79 Optimizing clinical decision and practice support (standardizing clinical processes and integrating 
fragmented records). 
80 New potentials in screening, diagnosis and treatment (expanding the coverage of evidence, moving 
towards continuous behavioral monitoring and precision medicine for early individualized treatment). See 
for further details on these categories, Marzyeh Ghassemi, et al., Opportunities in Machine Learning for 
Healthcare, ARXIV:1806.00388V2, 4-6 (2018). See also work by N. Coudray, et al., Classification and 
mutation prediction from non-small cell lung cancer histopathology images using deep learning, 24 NAT 

MED (2018). This work shows how deep-learning convolutional neural networks could aid  in assisting 
pathologists in their classification of lung tissue images; this information can be very important in applying 
appropriate and tailored targeted therapies to patients with lung cancer. See also work on the application 
of deep convolutional neural networks to breast cancer screening by Krzysztof J.  Geras, et al., High-
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promising potential in bioinformatics.81 The application of machine learning in 

bioinformatics could be useful in the prediction of biological processes, prevention of 

diseases and personalized treatment.82 Machine learning technology can help medical 

researchers to discover hidden patterns from the huge amount of electronic health 

records (EHR) data and develop predictive models that could help the physicians with 

clinical decision making.83 Concretely, for example, machine learning algorithm could be 

used to predict diagnoses given features from the EHR.84  

 

Similarly, in recent years, deep neural networks and particularly convolutional neural 

networks (CNNs) have been adapted rapidly by the medical imaging research 

community.85 Deep learning applied to medical imaging delivers automatic discovery of 

object features and automatic exploration of feature hierarchy and interaction.86 These 

deep learning advancements in pattern recognition could have concrete successful uses 

in for example detection of metastatic breast cancer in images of lymph nodes biopsies.87 

In this respect, it was found that the accuracy rates of detection of pattern recognitions 

was reaching an almost 0.995 when physicians worked together with deep learning 

systems; machine learning algorithms and physicians did better together than either 

alone.88 However, deep learning requires the availability of large labelled datasets in 

                                                       
Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks, 
ARXIV:1703.07047V3 (2018).        
81 Bioinformatics aim to examine and understand biological processes at a molecular level (Daniele  Ravì, 
et al., Deep Learning for Health Informatics, 21 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 

10 (2017).) 
82 Id. 
83 Xinyuan  Zhang, et al., Multi-Label Learning from Medical Plain Text with Convolutional Residual 
Models, ARXIV:1801.05062V2, 1 (2018).). See also Price, B.U. J. SCI. & TECH L.  , 348 (2015). Price argues 
that this approach promises a faster, less costly path to empower many novel biological relationships, 
enhancing possibilities for treatment decisions and promoting new therapeutics.    
84 Zhang, et al., ARXIV:1801.05062V2, 1 (2018). Mukherjee investigated how doctors learn to diagnose in 
contrast to AI. It was indicated in this investigation that a successful reading of a radiological image was 
partly based on the subconsciousness of the radiologist (see Siddhartha Mukherjee, A.I. VERSUS M.D.  
What happens when diagnosis is automated? , THE NEW YORKER  2017. ); the extent to which such 
observations could differentiate an AI radiological tool from a human radiologist would become clearer in 
this paper.          
85 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 11 (2017). 
86 Id. at, 13. See also deep learning uses in medical imaging and specific uses in anatomical application areas 
(brain, eye, chest, digital pathology and microscopy, breast, cardiac, abdomen, musculoskeletal and other) 
by G. Litjens, et al., A Survey on Deep Learning in Medical Image Analysis, ARXIV:1702.05747V2, 7-23 
(2017). 
87 SEJNOWSKI. 2018. 
88 Id. 
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order to be successful in disease detection and classification.89 Furthermore, as further 

explained below, beyond the challenge concerning the availability of a large labelled 

dataset, it is sometimes also a challenge to have the “correctly” labelled data in medicine 

as sometimes domain experts disagree on the labeling themselves (e.g. whether or not 

there is a nodule on a computed tomography (CT) image).  

 

Other uses of machine learning in medicine include helping the physicians to choose 

between a selection of known interventions, recommend an off-label use of an approved 

intervention, suggest what drug is most likely to treat the specific tumor of a particular 

patient more effectively based on the genetic sequence of the patient’s tumor, 

continuously evaluate a patient’s vital signs and sound an alarm at an earlier stage, 

allocate scarce resources by suggesting which patient might benefit most from, for 

example, a transplant and generate hypotheses for traditional biomedical research that 

might lead to the  uncovering of the underlying mechanisms.90     

 

A different type of use of machine learning in healthcare concerns pervasive sensors, such 

as wearable, implantable and ambient sensors that are used to continuously monitor 

certain features related to health and wellbeing.91 Deep learning has substantially 

contributed to the utility of such pervasive sensing in a wide variety of health applications 

by improving the accuracy of sensors that measure food calorie intake, energy 

expenditure, activity recognition, sign language interpretation and detection of irregular 

events in vital signs.92 However, a major challenge still remains namely the selection of 

features that can generalize across the wide variety of food and daily activities.93     

 

It has been also suggested that predictive systems analyzing large quantities of data could 

be used in six concrete cases: high-cost patients, readmissions, triage, decompensation 

when a patient’s condition worsens, adverse events and treatment optimization for 

                                                       
89 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 13 (2017). 
90 W. Nicholson II Price, Medical Malpractice and Black-Box Medicine in BIG DATA, HEALTH, LAW AND 

BIOETHICS 297, (Glenn Cohen ed. 2018 ). 
91 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 13 (2017). 
92 Id. at, 14. 
93 Id. at, 13. 
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diseases having an impact on multiple organs.94 For example, the ability to accurately 

predict the trajectory of a patient’s disease could allow the clinician to target more 

accurately expensive and complicated therapies to patients who stand to benefit the most 

from them.95 However, such predictions, as useful as they may be, at the same time raise 

a number of sensitives. Such predictions could be determining whether a patient should 

be administered certain life-saving treatments, and if so, which patient should be 

prioritized. Irrespective of the accuracy of machine learning algorithms in making such 

predictions it might still necessitate some form of reasoning as to how this prediction has 

been reached. Both patients and physicians in most cases would justifiably require some 

sort of explanation on these predictions that could have a paramount impact on the life 

of a person. Similarly, different research work in medicine aims to develop accurate 

predictions on future illnesses, readmissions and mortality of individuals in order to 

improve clinical decision making and optimize clinical approaches.96 Such predictions 

could have valuable impacts on the care of a patient but at the same time could in the 

future have an impact on health and life insurances of individuals.97 Consequently, once 

again, some form of explanation as to how the particular prediction has been reached 

might be necessary in this respect as well. Furthermore, machine learning could also aid 

in drug discovery and development.98 Moreover, machine learning could be applicable in 

public health that aims to prevent diseases, prolong life and enhance healthcare by 

examining the spread of disease and social behaviors in connection to environmental 

factors.99  

 

                                                       
94 D. W. Bates, et al., Big data in health care: using analytics to identify and manage high-risk and high-
cost patients, 33 HEALTH AFF (MILLWOOD), 1124-1127 (2014).  
95 Id. at, 1127. 
96 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 15 (2017). 
97 In this respect it is interesting to point out that the cost of health care in the US is almost double than that 
in other developed countries; this unsustainable development has led to calls for improving the value of 
health care (see for more details Bates, et al., HEALTH AFF (MILLWOOD), 1123 (2014).). These cost related 
challenges might also have an impact on how machine learning algorithms are trained and how they are 
used the medical domain that could be raising concerns.          
98 Price, HARV. J. L. & TECH. , 435-437 (2015). For example, it could broaden the already-widespread notion 
of off-label use (i.e. use that has not been approved by the FDA) beyond the use founded on practitioner 
experience or limited clinical trials; it could also aid the discovery of new drugs and aid and reduce the costs 
of clinical trials.       
99 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 15 (2017). 
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Deep learning systems would not only be applicable in the clinic but could soon be directly 

used by patients outside the clinic as well without physician’s presence or examination. 

For example, it could be possible for anyone with a smartphone to photograph a 

suspicious skin lesion and having it diagnosed immediately.100 This direct connection 

between the manufacturer of machine learning medical systems and patients raises its 

own challenges and legal implications including warnings.  

 

As it is apparent from the above, machine learning has already started changing the 

practice of medicine. These changes encompass new challenges and could have new legal 

implications as examined throughout this paper.101 A fundamental question in this 

respect would be the extent to which doctors and patients would trust machine learning 

algorithms. In the case of conflicting opinions which opinion should prevail? As already 

mentioned above, in contrast to conventional medical devices, machine learning 

algorithms assess themselves the relevant images or features concerning a patient and 

reach their own predictions. Whereas, it would up to the doctor to make this assessment 

and reach a conclusion when relying on conventional medical devices.  Who should be 

liable in case where the wrong opinion was followed? Should the physician follow the 

machine learning algorithm’s “opinion” if the physician does not know the biological 

relationships underlying the algorithm’s recommendation and cannot explain it to the 

patient?102 Will the patient accept the advice of the algorithm if they cannot understand 

even the basic links made to reach that advice?103 The question is how should law and 

policy choices facilitate the deployment of such algorithms in medicine and ensure the 

acceptance by patients and health providers?104 As Price points out, the argument is 

sometimes made, admittedly somewhat cynical, that there are lots of medical treatments 

provided and medicines subscribed where the exact mechanism is unknown.105 As we 

                                                       
100 SEJNOWSKI. 2018. 
101 As to obstacles that there may be erected from changing the practice of medicine through statistical 
learning approaches and how these might be overcome see Rahul C.  Deo, Machine Learning in Medicine, 
132 CIRCULATION (2015).     
102 Price, HARV. J. L. & TECH. , 465 (2015).  
103 Id. at, 466. This challenge concerning the patient might also have an impact on informed consent.   
104 Id.     
105 Price points out that it has been argued, admittedly somewhat cynical, that doctors and patients already 
accept treatments even though they don’t have much understanding for those treatments; that physicians 
could only 55% of the time correctly identify whether a drug was FDA approved for a particular indication; 
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noted above, machine learning algorithms in medicine introduce a distinct addition to 

medical diagnosis and treatment compared to conventional medical devices and 

medicines. Machine learning algorithms, fully autonomously assess images and/or 

features concerning a patient and reach their independent and precise recommendation 

on what should be done. Whereas with conventional medical devices or medicines, the 

physician still plays a major role in assessing the treatment.  

 

Machine learning algorithms also play a very important role to the rising and promising 

personalized medicine.106 Physicians are already using, for example, diagnostic genetic 

tests to tailor treatments to the individual patient.107 However, there are a number of 

distinctions between such conventional approaches and machine learning approaches to 

personalized medicine. Some of these distinctions could be also encompassing new legal 

implications that would need to addressed.  First, conventional approaches to 

personalized medicine use only a limited and simple set of relationships but machine 

learning algorithms would be able to make connections between massive amounts of data 

and identify more complex biological relationships.108 Secondly, conventional 

approaches, what Price calls explicit personalized medicine, is based on scientifically 

identified and understood relationships.109 This approach is based on scientific and 

clinical research aiming to identify and explain simple biological relationships between 

certain measurable features of a patient and possible medical outcomes for that particular 

patient.110 This approach uses relationships between different biomarkers and medical 

responses to identify diagnoses and medical treatments.111 On the other hand, the 

machine learning approach, what Price calls “black-box” medicine, is grounded on 

                                                       
finally, that the mechanism of actions is unknown for many drugs; he points out even given this possibility, 
it still appears that some knowledge is better than none; moreover, he puts forward some proposals on how 
this problem could be legally addressed (id.). 
106 Personalized medicine refers to the tailoring of treatment based on the different characteristics of 
individuals. The idea behind personalized medicine is that all patients are different and treatment should 
be tailored to the particular patient. In addition to medical treatment, personalized medicine could aid drug 
discovery (see id. at, 424-425.). 
107 Id. at, 424. 
108 See id. at, 424 and 429. 
109 Id. at, 425. 
110 Id. at, 427. He notes that “explicit” refers to the fact that these relationships are explicitly identified and 
validated; in other words, knowing why a treatment is tailored to a particular patient.       
111 Often these biomarkers are genomic variations and genetic diagnostic tests and it in these areas that most 
research on personalized medicine takes place (see id.).  
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relationships that are not understood and often, based instead on non-transparent 

computational algorithms. Black-box medicine makes predictions and improve 

treatments on the basis of large datasets and algorithms but it does not provide any 

explanations or identifying complex relationships.112 Machine learning in medicine could 

prove extremely successful in identifying connections that cannot be easily labelled or 

understood.  

 

Having referred to the opacity of machine learning algorithms, it should be also pointed 

out that radiologists or other physicians might, like ML algorithms, be unable to articulate 

the internal algorithm they use to take a decision.113 They often use their experience to 

recognize connections between image and implicit biology but those relationships cannot 

be explicitly indicated.114An interesting question that arises in this respect is whether the 

type of opacity inherent in a human medical decision is similar or not to the one inherent 

in a machine learning algorithm. Similar or not, still a human physician is subjected to 

different legal rules than products. A physician might be sued for medical malpractice and 

would be required to provide explanations concerning her opaque at the time decision. 

Regarding products, as shown throughout this paper, there are unique distinctions 

between conventional products and machine learning technologies.  

 

5. Supervised and unsupervised machine learning and challenges in 

medicine 

 

As we have introduced above, machine learning algorithms could generally fall under the 

categories of supervised or unsupervised depending on the type of experience that are 

allowed to have during the learning process. 115  

 

                                                       
112 Id. at, 429. 
113 Id. at, 433. 
114 Id. 
115 GOODFELLOW, et al.,  102. 2016. 
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Supervised learning, deep or not,116 is the most common form of machine learning.117 

Supervised machine learning algorithms experience a dataset which is a collection of 

features that are associated with a label or target.118 The idea behind supervised learning 

is that the target or label (y) is provided by the teacher who shows the machine learning 

system what to do.119 The machine is basically taught during its learning process to predict 

(y) from different input values (x). It does that by trying to find a function that best 

connects input (x) and output (y).120 In supervised machine learning we have both a target 

(or label) and a collection of features. The labeling of data (e.g. “tumor” or “no tumor”) 

means that we know the output or target (y). Supervising learning techniques have been 

quite popular in medical image analysis.121 In designing such systems it is required to 

select discriminant features from images that is done by human researchers hence why 

these systems are known as systems with handcrafted features.122 However, as explained 

below, sometimes the selection of features is a challenging task in medicine and that could 

translate to detrimental diagnosis and/or treatment. Moreover, defining target (y) might 

also prove challenging in medicine especially in cases where targets are not binary or there 

is no agreement on the labeling of the data.123 For instance, in designing a machine 

learning system to determine the action to be taken in an intensive care unit, there could 

be different targets that need to be simultaneously balanced. For example, a balance 

would need to be struck between prolonging the life of a patient and providing a good 

quality of life to a patient. On what basis should a doctor disregard a machine learning 

prediction? What information is needed to enable the doctor to reach such a decision?  

 

                                                       
116 Deep learning is explained below.  
117 Yann LeCun, et al., Deep Learning, 521 NATURE, 436 (2015). 
118 GOODFELLOW, et al.,  103. 2016. 
119 Id. 
120 The way to achieve good predictions during training is to compute an objective function that measures 
the error between the machine’s prediction and the desired prediction. The machine then modifies its 
internal adjustable parameters in order to reduce this error. These adjustable parameters are referred to as 
weights. In machine learning systems there could be millions of these adjustable weights and millions of 
labelled examples used to train these machines (LeCun, et al., NATURE, 436 (2015).).    
121 See how supervised learning is used in medicine at Deo, CIRCULATION, 1920 (2015). 
122 Litjens, et al., MED IMAGE ANAL, 60 (2017). 
123 The challenges concerning the labeling of data are further examined below.   
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In unsupervised learning there is no teacher so the algorithm should learn by itself to 

make sense of the data.124 In other words, there is no need for human labor to annotate 

examples during learning as the algorithm extracts by itself information from the 

dataset.125 Thus, in unsupervised learning there is no need to have labelled data.126 

However, the dividing line between the two types of learning is often blurred and many 

machine learning systems can be used to perform both tasks.127 Moreover, the distinction 

between supervised and unsupervised is not clear as it is not clear whether a value is a 

feature (an input) or a label (a target).128 Thus, in principle, features can be selected in a 

manner that could “bias” the unsupervised learning algorithm towards a certain target 

despite that no labels were provided during its training. This is another challenge with 

practical impacts in medicine and legal implications that would need to be addressed. If 

there is a way to reveal such limitations might provide better medical care and avoid any 

potential legal liability concerns.   

 

Unsupervised machine learning might have a great potential in radiology because 

machines could learn to detect patterns like humans recognize objects and structures 

without any need for labels. Hence why, there are unsupervised machine learning 

techniques that are developed which are expected to have an impact in medical 

imaging.129 Moreover, unsupervised learning might prove useful in the so called precision 

medicine.130 Most common diseases are inherently heterogeneous hence the quest to 

redefine disease according to pathophysiologic mechanisms, which could in turn, indicate 

new paths to therapy.131 The challenge is to identify such mechanisms for complex 

                                                       
124 GOODFELLOW, et al.,  103. 2016. 
125 Id. at, 142. 
126 Human and animal learning is mainly unsupervised learning (LeCun, et al., NATURE, 442 (2015).). 
127 GOODFELLOW, et al.,  103. 2016. It is also interesting to point out that some machine learning algorithms 
do not solely experience a fixed dataset. Reinforcement learning algorithms interact with an environment 
consequently there is a feedback loop between the learning system and its experiences. However, most 
machine learning algorithms simply experience a dataset; a dataset is a collection of features (id. at, 104.). 
Systems that combine both reinforcement learning and deep learning are at their infancy but they have 
already outperformed other systems and have impressive results in video games (LeCun, et al., NATURE, 
442 (2015).). 
128 GOODFELLOW, et al.,  142. 2016. 
129 See further Litjens, et al., ARXIV:1702.05747V2, 27 (2017). 
130 See more details Deo, CIRCULATION, 1921 (2015). 
131 Id. 
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multifactorial diseases.132 Unsupervised learning might identify patterns that could prove 

useful in this quest.133 Unsupervised learning, in contrast to supervised learning, aims to 

identify patterns in the data and there is no predicted outcome. In fact, using supervised 

learning techniques in this regard it could miss different subgroups completely and 

consequently not allowing for the identification of novel disease mechanisms.134    

 

6. Deep learning potentials and inherent challenges  

  

Deep learning has in recent years set an exciting momentum in machine learning.135 Deep 

learning is a particular type of machine learning.136 Neural networks are a type of learning 

algorithm which constitutes the basis of most deep learning methods.137 Deep learning 

technique that has its foundations in artificial neural networks, is emerging as a powerful 

tool for machine learning, promising to reshape the future of artificial intelligence.138 

Deep neural networks can be trained by both supervised and unsupervised learning 

techniques.139 Regarding the relationship between deep learning and conventional 

machine learning, LeCun et al note that conventional machine-learning algorithms had 

limited ability to process natural data in their raw form.140As they point out, for many 

years constructing a conventional machine learning system necessitated careful 

engineering and substantial domain expertise to design a feature extractor that 

transformed the raw data into suitable internal representation or feature vector from 

which the learning subsystem (usually the classifier) could detect or classify patterns in 

the input. Whereas, representation learning is a group of methods that allows machines 

to be fed with raw data and to automatically discover the representations needed for 

                                                       
132 Id. 
133 A similar approach albeit on genomics led to finding an eosinophilic subtype of asthma; (see further id.) 
134 Id. 
135 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 4(2017). 
136 GOODFELLOW, et al.,  96. 2016. 
137 Litjens, et al., MED IMAGE ANAL, 62 (2017). In this respect, Finlay and Dix note that the development of 
artificial neural networks, modelled on the human brain, has been welcomed by some as the foundations 
for “genuine machine intelligence and learning” (see FINLAY & DIX,  6. 1996.).   
138 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 4(2017). In this context they also 
note that in contrast to more traditional use of neural networks deep learning accounts for use of many 
hidden neurons and layers, typically more than two, and this is an architectural advantage combined with 
new training paradigms (at 4).   
139 Id. at, 5. 
140 LeCun, et al., NATURE, 436 (2015).  
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detection or classification.141 As they explain, “[d]eep-learning methods are 

representation-learning methods with multiple levels of representation obtained by 

composing simple but non-linear modules that each transform the representation at one 

level (starting with the raw input) into a representation at a higher, slightly more abstract 

level. With the composition of enough such transformations, very complex functions can 

be learned.”142  Adding more hidden layers to the network enables a deep architecture to 

be build that can express more complex hypotheses due to the ability of the hidden layers 

to capture nonlinear relationships.143 The crucial aspect of “deep learning is that these 

layers of features are not designed by human engineers: they are learned from data using 

a general-purpose learning procedure.”144 This is the key advantage of deep learning that 

good features can be learned automatically using a general-purpose learning procedure 

rather than resorting to hand designing good feature extractors.145 Deep learning was 

designed to overcome certain obstacles faced by conventional algorithms.146 Conventional 

machine learning algorithms were failing to generalize well on certain tasks such as 

recognizing speech and objects.147 This challenge becomes exponentially more difficult 

when working with high-dimensional data and the mechanism used to achieve 

generalization in conventional machine learning are insufficient to learn complex 

                                                       
141 Id. 
142 Id. They use the example of an image to provide further clarifications on this process. As they state, an 
image comes in the form of a collection of pixels values; the learned features in the first layer of 
representation normally represent the presence or absence of edges at specific orientations and locations 
in the image; the second layer normally detects motifs by identifying specific arrangements of edges, 
irrespective of small variations in the edge positions; the third layer could assemble motifs into larger 
combinations that match parts of familiar objects and subsequently layers would identify objects as 
combinations of these parts.      
143 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 5(2017). 
144 LeCun, et al., NATURE, 436 (2015). They note that deep learning dramatically improved the state-of-the-
art in speech recognition, visual object recognition, object detection as well as in other domains such as 
drug discovery and genomics; additionally, deep learning techniques are used to match news items, posts 
or products with user’s interests, select relevant results of search. Google’s automatic translator has also 
resulted from the deep learning technique (as noted by Larry Hardesty, Explained: Neural networks 
(2017), available at http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414.).   
145 LeCun, et al., NATURE, 438 (2015).  
146 GOODFELLOW, et al.,  152. 2016. 
147 Id. 
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functions in high-dimensional spaces.148 Deep learning turned out to be successful in 

discovering intricate structures in high-dimensional data.149  

 

It is clear that deep learning could prove particularly useful in medicine where multiple 

factors could be corelated in a complex network. However, we also see that deep learning 

architectures at their current stage of evolution could be highly non-interpretable (i.e. ML 

system not able to provide an explanation for its prediction) and this could be a 

particularly problematic in medicine. As we have seen above, the ability to generalize well 

is key element to successful learning. As we have also seen, to generalize well, machine 

learning algorithms should be guided by prior beliefs on the type of function they should 

learn.150 In this respect it is interesting to point out that the so called no free lunch 

theorem for machine learning (Wolpert, 1996) provides that, “averaged over all possible 

data-generating distributions, every classification algorithm has the same error rate when 

classifying previously unobserved points.”151 This means, as Goodfellow et al explain, that 

in some sense, no machine learning algorithm is universally any better than any other. 

However, they emphasize that if one makes assumptions about the types of probability 

distributions one encounters in real-world applications, then one can design learning 

algorithms that perform well on these distributions. Thus, the goal of machine learning 

research they explain is not trying to find the best learning algorithm. Instead the goal is 

to understand the types of distributions that are relevant to the “real world” that an AI 

                                                       
148 Id. As they also state the majority of deep learning algorithms are based on an optimization algorithm 
called stochastic gradient descent (see at 96 and 149-150); they also describe how one can combine various 
algorithm components, such as an optimization algorithm, a cost function, a model, and a dataset to build 
a machine learning algorithm (see at 97 and 151-152)  
149 LeCun, et al., NATURE, 436 (2015). For example, predicting what would be the effects of mutations in 
non-coding DNA on gene expression and disease.  
150 GOODFELLOW, et al.,  154. 2016. As they explain these prior beliefs can take different forms. For example, 
prior beliefs can be implicitly expressed by choosing algorithms that are biased toward choosing some class 
of function over another. They explain how deep learning introduces additional (explicit and implicit) priors 
in order to reduce the generalization error on complex tasks. They refer to K-nearest neighbors’ algorithm 
and decisions trees (see at 154-157). Furthermore, they point out that other approaches to machine learning 
make stronger, task-specific assumptions. However, they note that normally one does not include strong, 
task specific assumptions in neural networks in order to generalize to a much wider variety of structures. 
They point out that the central idea in deep learning is that we assume that the data was generated by 
composition factors or features and that many other similarly generic (mild) assumptions can further 
improve deep learning algorithms (see at 157).        
151 Id. at, 115-116. 
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agent experiences, and the type of machine learning algorithms that perform well on data 

drawn from the kinds of data-generating distributions we care about.152  

 

Deep learning is a promising machine learning technique with great potential. Machine 

learning will have many more successes in the near future as it necessitates very little 

engineering by hand, thus can easily take advantage of increases in the amount of 

available computational data.153 Provided that a deep learning network is optimally 

weighted it leads to an effective high-level abstraction of the raw images or data.154 This 

high level of abstraction result in an automatic feature set, which otherwise would have 

necessitated hand-crafted or bespoke features.155 Consequently, deep learning, for 

example, in the domain of medical imaging can generate features that are more 

sophisticated and harder to elaborate in descriptive ways.156  

 

Research work157 in the fields of dermatology and ophthalmology has shown that it is even 

possible to outperform medical experts in certain tasks using deep learning for image 

classification.158 Deep learning techniques are the main techniques now used in medicine 

but as explained throughout this paper there are numerous challenges and limitations in 

                                                       
152 Id. at, 116. In this context, Deo notes that simple algorithms can perform as well as more complex ones 
when the number of training examples is low and hence more complex models are likely to overfit and 
generalize poorly (Deo, CIRCULATION, 1924 (2015).).    
153 LeCun, et al., NATURE, 436 (2015). As they point out the deep learning discovers complex structure in 
large data sets by using backpropagation algorithm to show how a machine should change its internal 
parameters which are used to compute the representation in each layer from the representation in the 
previous layer (they make references to deep convolutional nets and recurrent nets). In this context, Litjens 
et al note, that the concept that lies at the basis of many deep learning algorithms is that computers 
themselves learn the features that optimally represent the data for the problem in question: models 
(networks) composed of many layers that transform input data (e.g. images) to outputs (e.g. indicating 
whether disease is present or absent) while learning increasingly higher-level features (Litjens, et al., MED 

IMAGE ANAL, 60 (2017).).   
154 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 4(2017). 
155 Id. 
156 Id. As they note implicit features could determine fibroids and polyps and characterize anomalies in 
tissue morphology such as tumors (at 4).  
157 Andre Esteva, et al., Dermatologist-level classification of skin cancer with deep neural networks, 542 
NATURE (2017);Varun Gulshan, et al., evelopment and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus PhotographsAccuracy of a Deep Learning Algorithm 
for Detection of Diabetic RetinopathyAccuracy of a Deep Learning Algorithm for Detection of Diabetic 
Retinopathy, 316 JAMA (2016). 
158 Litjens, et al., ARXIV:1702.05747V2, 26 (2017). However, as Litjens et al. explain such findings need to 
put into context relative to medical image analysis in general, as the majority of tasks can be no means be 
treated as “solved.”    
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applying machine learning to different medical tasks.159 As we will see below, there are 

tradeoffs with deep learning including the important issue of lack of interpretability 

despite that deep learning could prove more accurate for some cases. At the current stage 

of evolution, neither the engineer who developed the deep learning system nor the system 

itself would be able to provide an explanation why that prediction was reached. This is the 

point where deep learning algorithms especially when applied to medicine could pose 

certain challenges and consequently legal challenges as well. Additionally, it has been 

shown that the exact deep learning architecture to be used in medical image analysis is 

not the most important determinant in obtaining good solutions.160 An important aspect 

is that expert knowledge about the task aiming to solve can provide advantages that go 

beyond the addition of more layers to a deep learning network.161  

 

Although deep learning architectures are delivering substantial improvements compared 

to conventional machine learning algorithms, many scientists and researchers remain 

skeptical of their application to the medical domain.162 As already noted, deep learning 

models are often not interpretable and this lack of interpretability has distinct impacts in 

healthcare where the patient and physician could justifiably require some explanation on 

the suggested predictions concerning the course of treatment. Additionally, deep learning 

models are used as a black-box without the researchers be able to explain why is in certain 

cases successful or without the ability to modify them in cases where there are 

misclassification problems.163 Furthermore, in order to train effectively deep learning 

models, they require large sets of training data and thus rare diseases or events might not 

be well suited to deep learning.164 Also, for many applications, raw data cannot be directly 

used as training input for deep neural networks.165 Thus, in addition to the burden of 

transforming this raw data into appropriate training inputs, as explained below, labeling 

                                                       
159 See id. at, 2. Out of 308 papers reviewed in the survey by Litjens et al. it was clear that deep learning has 
spread all over medical image analysis (see at 23).   
160 Id. at, 23. 
161 Id. Convolutional neural networks (CNNs) that are the top deep learning performers in medical image 
analysis. 
162 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 16 (2017). 
163 Id. at, 17. 
164 Id. 
165 Id. 
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of these data carries its own separate challenges. Moreover, many deep neural networks 

could easily reach wrong predictions when some noise (artifact) is applied to a medical 

image.166 Finally, as we have seen, the layers of features in developing deep learning 

architectures are not designed by human engineers but they are learned from data using 

a general-purpose learning procedure.167 Consequently, even the ML engineer who 

develops such architectures in many cases does not know precisely how the prediction is 

reached or how the deep learning devices might precisely perform in a particular 

occasion. As it appears, there are tradeoffs and a number of challenges in developing deep 

learning architectures. These challenges could have practical impacts especially in the 

medical domain and legal implications especially regarding warning obligations.    

 

7. The challenge of learning from medical data 

 

As we have seen, machine learning algorithms, especially deep learning ones, have the 

ability to learn from data and thus require less engineering by hand.168 Despite the many 

advances and great potentials of the use of machine learning in medicine, the direct 

application of machine learning in medicine remains filled with many pitfalls.169 Many of 

these challenges arise from the objective to make personalized predictions using large 

volumes of noisy and biased data.170 Failing to address these challenges could hamper the 

validity and utility of machine learning methods.171 Healthcare has become a natural 

domain for the application of machine learning particularly due to the increasingly large 

amounts of data resulting from electronic health records (EHRs).172 Machine learning 

                                                       
166 Id. 
167 LeCun, et al., NATURE, 436 (2015). They note that deep learning dramatically improved the state-of-the-
art in speech recognition, visual object recognition, object detection as well as in other domains such as 
drug discovery and genomics; additionally, deep learning techniques are used to match news items, posts 
or products with user’s interests, select relevant results of search. Google’s automatic translator has also 
resulted from the deep learning technique (as noted by Hardesty. 2017.).   
168 See LeCun, et al., NATURE, 436 (2015). 
169 Ghassemi, et al., ARXIV:1806.00388V2, 1 (2018). 
170 Id. 
171 Id. 
172 Id. Sometimes, the term big data used. Big data refers to the analysis of large amounts of data and 
collecting new insights from that analysis (noted by Bates, et al., HEALTH AFF (MILLWOOD), 1123 (2014).). 
See also Price’s explanations on big data; he also notes that with big data far more relationships could be 
used than the current version of personalized medicine; (Price, HARV. J. L. & TECH. , 424 and 430-432 
(2015).). See also Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 4(2017).; Litjens, et 
al., MED IMAGE ANAL, 60 (2017).; W. Nicholson II Price, Medical Malpractice and Black-Box Medicine in 
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technology can aid in discovering hidden patterns from massive EHR data and develop 

predictive models that could be used for medical decision making.173 However, clinical 

data and practice present distinct challenges that create complications to the use of 

common methodologies.174 There are a number of challenges associated with the 

collection and use of data.175 

 

When medical care is provided, care staff collect clinical data about a patient and consider 

knowledge from the general population to decide how to treat the patient.176 As explained 

by Ghassemi et al, different data types come with different challenges.177 For example, 

high-frequency monitors are used to record real time data at a patient’s bedside such as 

oxygen saturation. These signals frequently have artifact corruption (e.g. sensors falling 

off), hence why such data must be aggregated, filtered or discarded to remove these 

artifacts before any learning or feature extraction.178 Another challenge concerns vital 

signs, laboratory tests and other numerical measurements that are noted by medical 

staff.179 Such tests and numerical measurements are often irregularly ordered; non-

invasive values can be in conflict with high-frequency invasive data;180 staff may have a 

feeling about the patient’s state and preferentially record results that concur with that 

understanding;181 clinical staff order laboratory tests related to the amount of variability 

                                                       
BIG DATA, HEALTH LAW, AND BIOETHICS 296, (I. Glenn Cohen ed. 2018).; Harini  Suresh, et al., Clinical 
Intervention Prediction and Understanding using Deep Networks, ARXIV:1705.08498V1, 1 (2017). See 
other types of data that can be used in machine learning including billing code labels and patient 
physiological signals to predict mortality at id. at, 2-3. 
173 Zhang, et al., ARXIV:1801.05062V2, 1 (2018). 
174 Ghassemi, et al., ARXIV:1806.00388V2, 1 (2018). 
175 These include data complexity due to varying length, irregular sampling, lack of structured reporting and 
missing data and long-term dependencies between clinical events and disease diagnosis and treatment that 
creates complications to learning (see further on these Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND 

HEALTH INFORMATICS 15 (2017).).   
176 Ghassemi, et al., ARXIV:1806.00388V2, 1 (2018). In this context it should be pointed out that clinical data 
is available in many different forms which can be relevant to understand patient health. Electronic health 
record is one of these types; other types may include for example scans (G. M. Weber, et al., Fiinding the 
Missing Link for Big Biomedical Data 311 JAMA (2014). Other data in acute care for example can include 
laboratory tests, written notes, vital signs, high frequency data sampled hundreds of times per second and 
static demographic data (as noted by Ghassemi, et al., ARXIV:1806.00388V2, 2 (2018).). 
177 Analysis that follows and references were obtained from Ghassemi, et al., ARXIV:1806.00388V2, 2 (2018). 
178 Id. 
179 Id. 
180 H. L.  Li-wei, et al., Methods of Blood Pressure Measurement in the ICU, 41 CRIT CARE MED. (2013). 
181 CW Hug, et al., Clinician blood pressure documentation of stable intensive care patients: an intelligent 
archiving agent has a higher association with future hypotension, 39 see id. at  (2011). 
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they expect in the test;182 for instance, the absolute time that a laboratory test occurs can 

be more predictive of patient health than the value of the test.183 Note records and the 

interaction between a patient and the healthcare team is another challenge.184 Normally, 

clinical notes are aimed to provide trained professionals a quick glance into important 

issues concerning the patient’s condition.185 However, even clinical natural language 

processing (NLP) packages designed to process clinical text can be deceived.186  

 

Another challenge with the use of data in machine learning concerns the problem of 

missing data. The problem of missing data arises very often in practice.187 As Ghassemi et 

al note in designing a learning algorithm in medicine, the sources of missingness must be 

carefully understood.188 Moreover, as they interestingly emphasize the fundamental 

feature of missing data is that there may be information conveyed by the absence of an 

observation, and ignoring the correlation may lead to models that make wrong and even 

harmful predictions.189 Multivariate time series data that are prevalent in a variety of 

practical applications in medicine very frequently carry missing observations due to 

different reasons including medical events, saving costs, inconvenience and anomalies.190 

The problem with such missing values and patterns is that they provide rich information 

about target labels in supervised learning tasks.191 Additionally, recurrent neural 

networks (RNN) models that are using EHR data and often used for modeling diseases 

                                                       
182 G. Hripcsak, et al., Characterizing treatment pathways at scale using the OHDSI network, 113 PROC 

NATL ACAD SCI U S A (2016). 
183 GM Weber & IS. Kohane, Extracting physician group intelligence from electronic health records to 
support evidence based medicine., 8 PLOS ONE. (2013). 
184 Ghassemi, et al., ARXIV:1806.00388V2, 2 (2018). 
185 Id. 
186 G. K. Savova, et al., Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): 
architecture, component evaluation and applications, 17 J AM MED INFORM ASSOC (2010). as noted by 
Ghassemi, et al., ARXIV:1806.00388V2, 2 (2018). It is interesting in this respect to point out what Ghassemi 
et la note namely that clinical NLP tool trained on big amounts of medical text may incorrectly identify 
many autistic patient records with cancer. As to how medical narrative information could be converted into 
relational database tables of patient information see N Sager, et al., Natural language processing and the 
representation of clinical data, 1 J AM MED INFORM ASSOC. (1994).                        
187 Donald B. Rubin, Inference and Missing Data, 63 BIOMETRIKA, 581 (1976). 
188 Ghassemi, et al., ARXIV:1806.00388V2, 3 (2018). 
189 Id. 
190 Zhengping Che, et al., Recurrent Neural Networks for Multivariate Time Series with Missing Values, 8 
SCIENTIFIC REPORTS, 1 (2018). 
191 Id. 
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and patient diagnosis in medicine do not systematically handle missing values in data.192 

Recent research has addressed this problem of missing data and proposed models to 

predict the missing values193 and handle better the inherent characteristics of EHR 

data.194 The manner of how this is done and the effectiveness of the process could prove 

challenging with practical medical and legal consequences as further explained below. 

 

In addition to the challenges of learning from data, the costs of collecting these data is a 

hurdle in developing machine learning algorithms in medicine. Depending on the 

machine learning technique used, data needs to be gathered, “cleaned” of unreliable 

observations and checked for quality and then put into compatible formats for a unified 

database.195 More data and diverse data often leads to the development of more accurate 

medical algorithms. Diverse and abundant data would have a greater capacity to identify 

complex implicit relationships in medicine.196 These challenges as well as other legal 

restrictions in collection of data could render the development of machine learning 

algorithms more difficult. Thus, in assessing regulatory frameworks and liability regimes 

these unique hurdles causing sometimes limitations in ML medical predictions should be 

also considered as further explained in this paper.           

 

8. The difficulty of choosing the “correct” features and indicating the 

“correct” labels  

 

We have seen above, that different types of data as well as missing data pose challenges 

in machine learning. In addition, it remains a challenge in medicine what features are 

selected to best capture the complexity of a disease process.197 It is primarily this challenge 

of collecting training examples with a set of (sufficiently) informative features that has 

limited the contribution of machine learning to complex tasks of prediction and 

                                                       
192 Zhengping  Che, et al., Recurrent Neural Networks for Multivariate Time Series with Missing Values, 
ARXIV:1606.01865, 6 (2016). 
193 Xenia  Miscouridou, et al., Deep Survival Analysis: Nonparametrics and Missingness, 85 PROCEEDINGS 

OF MACHINE LEARNING RESEARCH (2018). 
194 Rajesh  Ranganath, et al., Deep Survival Analysis, ARXIV:1608.02158 (2016). 
195 Price, HARV. J. L. & TECH. , 438 (2015). 
196 Id. 
197 Deo, CIRCULATION, 1921 (2015). 
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categorization in medicine.198 The use of the growing amount of medical data enables one 

to ask evidence-based questions concerning the need and benefits of, for example, 

particular clinical interventions in critical-care settings across large populations.199 It 

appears, that the challenges of collecting the “correct” data and extracting the “correct” 

features from these data could have substantial consequences in decision making in such 

critical-care interventions.  

 

Therefore, the first task in training a machine learning algorithm is to identify some 

features or predictors.200 Focusing on supervised learning (we will see unsupervised 

learning later), the fundamental question is how do we identify the “correct” features and 

we ensure that we do not miss out “important” ones? One simple way to choose features 

could be by identifying correlations between features and a disease or a medical event, for 

example a heart attack, and maintaining those that are significant.201 However, such an 

approach could miss out a substantial number of features that might be useful to a group 

of patients who have had for example heart attack.202 In some instances our limited 

understanding of a disease pathogenesis would render it unlikely that we are collecting 

all the correct features that are needed for accurate predictions.203 Even worse, it could 

be that there features that are useful in combination with other features but not on their 

own.204 It might be tempting in an attempt to resolve this problem to throw in all possible 

features but such an approach might make things even worse.205 Hence why variable and 

feature selection has drawn the attention of much of research in cases where there are 

hundreds of thousands of variables in datasets that are used to train machine learning 

algorithms.206  

 

                                                       
198 Id. at, 1923.  
199 M Wu, et al., Understanding vasopressor intervention and weaning: risk prediction in a public 
heterogeneous clinical time series database, 24 J AM MED INFORM ASSOC. , 488 (2017). 
200 Deo, CIRCULATION, 1921 (2015). 
201 Id. 
202 Id.  
203 Id. at, 1922.  
204 Id. at, 1921. 
205 Id. 
206 See Isabelle  Guyon & Andre ́  Elisseeff, An Introduction to Variable and Feature Selection, 3 J MACH 

LEARN RES 1157(2003). 
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Medical definitions and the behavior of clinicians in practice pose another distinct 

challenge in the development of machine learning algorithms in medicine. Medical 

definitions are working models based on the present scientific understanding of a 

disease.207 However, as these scientific understandings evolve, so do these definitions.208 

Thus, in the context of machine learning, good predictive performance labels that are 

based on such definitions is only as good as the underlying criteria.209 Similarly, it might 

be tempting to use the actual behavior of clinicians as the correct labels, but they could 

very well not be.210  

 

Another challenge in this respect, is the link made between features and targets in 

machine learning. While this relationship between features and targets is an object of 

learning, information leakage can render the prediction useless.211 For example, a 

machine learning algorithm could be designed to predict mortality of hospital patients 

using all available data until their death. If a machine learning algorithm is trained naively 

on predicting death when the ventilator is turned off in the preceding hour, such an 

algorithm would have high predictive performance, yet would have absolutely no clinical 

utility.212 It is often the case that patients and/or their families decide to withdraw care at 

a terminal stage of illness. 

 

It is often, and in most cases correctly, argued that the lack of training data is one of the 

major challenges in training machine learning algorithms. However, for example, in the 

area of radiology, this argument is partially true as most western hospitals have acquired 

millions of images as picture archiving and communication systems (PACS) have become 

a routine in the course of at least the last decade.213 Thus, in such cases, the challenge is 

not the availability of image data but the acquisition of relevant annotations/labeling for 

these images.214 For example, it is necessary to have a large amount of labeled data in 

                                                       
207 Ghassemi, et al., ARXIV:1806.00388V2, 4 (2018). 
208 Id. 
209 Id. 
210 Id. 
211 Id. 
212 Id. 
213 Litjens, et al., ARXIV:1702.05747V2, 25 (2017). 
214 Id. 
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order to train a deep architecture.215 There at least five major challenges in this regard. 

First, PACS normally store free-text reports by radiologists who explain their findings. 

Turning these reports into accurate annotations or structured labels in an automated 

manner necessitates complex text-mining methods, which is a field of study where deep 

learning is also used.216 Thus, deep learning techniques also substantially contribute in 

this regard but the problem that is particularly associated with deep learning namely 

interpretability still remains. Secondly, even in cases where the data is annotated by 

domain experts, label noise (i.e. distorted/corrupted data) can be a substantial limiting 

factor in the development of algorithms.217 For example, four different radiologists 

annotated pulmonary nodules in a widely used dataset218 for evaluating image analysis 

algorithms to detect nodules in lung CT (computed tomography).219 Interestingly, the 

number of nodules for which they did not unanimously agree on to be a nodule was three 

times greater than the number they fully agreed on.220 This example shows another 

distinct limitation of applying machine learning in medicine compared to for example 

autonomous vehicles where in the latter case there would at least be fewer disagreements 

on the annotation/labeling of data. Thus, training deep learning algorithms in medicine 

on such noisy data could intensify the call for more interpretability as further explained 

below. Thirdly, often classification in medical imaging is presented as a binary task – 

normal versus abnormal.221 However, such classification can be over simplified in many 

instances as both classes can be highly heterogeneous.222 Fourthly, another data-related 

challenge is class imbalance.223 In medical imaging, sometimes might be hard to find 

images for the abnormal class. For example, there are abundant of mammogram images 

but the majority of these images are normal and in cases where the mammogram does 

contain a suspicious lesions this is most of the times not cancerous and even most 

                                                       
215 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 5(2017). 
216 Litjens, et al., ARXIV:1702.05747V2, 25 (2017). 
217 Id. 
218 LIDC-IDRI dataset; see S. G. Armato, 3rd, et al., The Lung Image Database Consortium (LIDC) and 
Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans, 
38 MED PHYS (2011).as noted by Litjens, et al., ARXIV:1702.05747V2, 25 (2017). 
219 Litjens, et al., ARXIV:1702.05747V2, 25 (2017). 
220 Id. 
221 Id. 
222 Id. 
223 Id. at, 26. 
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cancerous lesions will not lead to the death of the patient.224 Finally, in many instances 

useful information is not just contained in the images themselves but physicians rely on 

a wealth of other data including patient’s history, age, demographics and other factors to 

reach a better decision.225 Thus, the weight that should be given to a machine learning 

prediction in reaching certain complex medical decisions could also pose challenges. 

 

Labeling of data could pose another distinct challenge in the medical domain. A patient 

can be associated with multiple diagnoses simultaneously226 as one patient may suffer 

from several connected illnesses.227 Zhang et al. acknowledging this complexity, they 

propose a convolutional residual model for multi-label classification from doctor notes in 

EHR data.228 They indicate that a comparison between their proposed model with several 

well-known baselines, to predict diagnosis based on doctor notes, showed the superiority 

of their proposed model.229 The extent to which machine learning interpretability could 

also substantially contribute to the resolution of such complexities is examined below.  

 

9. Machine learning bias and inherent tradeoffs   

 

The issue of bias in artificial intelligence has been widely debated by different groups in 

different disciplines and fora.230 The importance of examining algorithmic bias in 

medicine is that biased algorithms could be creating limitations in diagnosis and medical 

treatment. Having said that, as we will see below certain forms of bias could be beneficial 

to machine learning development.  

 

                                                       
224 Id. In such cases where a class is unrepresented a typical technique used is the application of specific 
data augmentation algorithms to the unrepresented class. 
225 Id. Some researchers considered combining all these factors into deep learning networks but as they 
acknowledged the improvements were not as large as expected (see T. Kooi, et al., Discriminating solitary 
cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network, 44 
MED PHYS (2017). as noted by Litjens, et al., ARXIV:1702.05747V2, 26 (2017).) 
226 E.g. cough, fever, and viral infection.  
227 Zhang, et al., ARXIV:1801.05062V2, 2 (2018). 
228 Id. at, 1. 
229 Id. 
230 See for example, issues raised by Margaret   Mitchell, et al., Model Cards for Model Reporting, 
ARXIV:1810.03993V2 (2019).; Joy  Buolamwini, How I'm fighting bias in algorithms(2017), available at 
https://www.ted.com/talks/joy_buolamwini_how_i_m_fighting_bias_in_algorithms?language=en.   
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There are three points that need to be set at the outset before embarking into further 

analysis. First, in many instances, it is even challenging to agree on what constitutes bias, 

what are the causes of bias and how bias could be rectified.231 For example, a study on sex 

bias in graduate admissions to the University of California, Berkeley showed that 

measuring bias is more difficult than is usually assumed and the evidence is sometimes 

even contrary to expectation.232 This challenge renders the task of finding appropriate 

solutions to the problem of machine learning bias even more challenging.233 Sometimes, 

                                                       
231 In this respect, DeepMind poses two open questions in developing artificial intelligence: What 
approaches are needed to fully understand biases in AI systems and data? What strategies should those 
designing AI systems use to counteract or minimize these effects? (DeepMind, Privacy, transparency and 
fairness, available at https://deepmind.com/applied/deepmind-ethics-society/research/privacy-
transparency-and-fairness/.) Hacker for example, identifies two causes of bias in the context of machine 
learning: (1) biased training data and (2) unequal ground truth. He subdivides biased training data into two 
subcases: (1) incorrect handling of training data (e.g. in supervised machine learning having incorrectly 
labelled data as a result of implicit bias or sampling bias where some part of the population is 
unrepresented) and (2) historical bias (e.g. historically successful candidates to a UK medical school were 
predominantly white males). Regarding unequal ground truth, he refers to cases where, for example, risks 
or other target variables are unevenly distributed between protected groups (Philipp Hacker, Teaching 
Fairness to Artificial Intelligence: Existing and Novel Strategies Against Algorithmic Discrimination 
Under EU Law, 55 CMLR 1143, 1146-1150 (2018).; He also distinguishes between direct and indirect 
discrimination under EU law in the context of machine learning algorithms (see id. at, 1151-1154.). For 
another approach, see Google’s crash course on fairness, explaining different types of human bias that can 
be inadvertently reproduced by machine learning algorithms and how to identify them and evaluate their 
effect at https://developers.google.com/machine-learning/crash-course/fairness/video-lecture. 
232 P. J. Bickel, et al., Sex Bias in Graduate Admissions: Data from Berkeley, 187 SCIENCE (1975). Another 
example includes the COMPAS algorithm that predicts the recidivism risk of criminal defendants; 
questions were raised on whether this algorithm discriminates against black people (see State v. Loomis 
881 N.W.2d 749, (Wis. 2016).; Note, State v. Loomis, 130 HARV. L. REV. 1530(2017).; Jeff  Larson, et al., 
How We Analyzed the COMPAS Recidivism Algorithm, ProPublica(2016), available at 
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm.; William 
Dieterich, et al., COMPAS risk scales: Demonstrating accuracy equity and predictive parity, Northpoint 
Inc (2016), available at http://go.volarisgroup.com/rs/430-MBX-
989/images/ProPublica_Commentary_Final_070616.pdf.).  In this context it is generally argued that 
recidivism is predicted at higher rates among certain minority groups in the US (see Julia  Angwin, et al., 
Machine Bias, ProPublica(2016), available at https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.); Nabi et al. ask to what extent are these predictions discriminatory? 
(Razieh   Nabi & Ilya Shpitser, Fair Inference On Outcomes, ARXIV:1705.10378V4 1(2018).       
233 For example, as to the ways to rectify discrimination, Hacker refers to a number of fairness criteria that 
have been advanced in algorithmic fairness research and distinguishes between two main concepts: (1) 
individual fairness and (2) group fairness. Some of these fairness criteria are mutually incompatible e.g. full 
individual and full group fairness; he argues that in the case where an algorithmic procedure is found to be 
discriminatory then bias minimization strategies would be applied; He divides these strategies into three 
different approaches: pre-processing approaches that modify the input data; in-processing approaches that 
aim to control the mapping from input to output data; and post-processing approaches that aim to 
transform the algorithmic output into a fair representation; he argues that in applying these techniques a 
careful proportionality assessment must be undertaken (Hacker, CMLR, 1175-1177 and 1182-1183 (2018).); 
Regarding biased training data, he argues that mitigation of this bias will improve the predictive accuracy; 
however, regarding cases where the algorithm correctly picks up features that are substantially correlated 
with a particular protected group, reduction of discrimination will imply a decrease in predictive accuracy 
(id. at, 1183-1184.) 
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the term fairness is used to denote, in the context of machine learning, the quest for 

designing algorithms that don’t learn to be bias and are “fairness-aware.”234   However, 

the selection of the appropriate fairness measures remains a deeply normative and 

challenging question.235 Affirmative actions or the positive actions, which is the term used 

in EU anti-discrimination law, remain in many cases controversial and a challenging 

question for courts.236 Secondly, as much as it is desirable to eliminate bias, it should be 

acknowledged that it would be impossible to ever completely eliminate it. Different forms 

of bias would be emerging in one form or another. As we will see below there are trade-

offs between machine bias and machine accuracy. Some forms of bias, such as inductive 

bias, could be useful for successful learners. Thus, in certain cases, bias might be even 

desirable and in others a necessary evil in designing machine learning algorithms.  Still, 

we should be reminded that machine learning bias in medicine could be acting as a 

limitation that could translate to detrimental diagnosis and treatment. Hence why, it 

becomes of paramount importance to address such limitations but at the same time 

understand the complex trade-offs in this respect. It is in this context that the question 

arises whether machine learning interpretability could provide a constructive solution to 

such problems. The advantage of ML interpretability (i.e. ML system providing an 

explanation for its prediction) is that it provides certain safeguards. Consequently, it 

allows for the deployment of machine learning algorithms in medicine rather than 

restraining their deployment until the “perfect” algorithm is designed. This issue will be 

further analyzed below when discussing machine learning interpretability and warning 

obligations.    

 

We have seen above that machine learning algorithms have the ability to learn from data. 

The argument that is usually presented in this regard is that in the case where the datasets 

themselves are biased, the machine learning algorithms also become biased.237 In 

                                                       
234 Friedler, et al., ARXIV.ORG/PDF/1609.07236.PDF,  (2016).  
235 Hacker, CMLR, 1183-1185 (2018). 
236 Regarding for example, the EU law challenges see explanations by Hacker id. at, 1179-1183. 
237 For example, in the medical domain, it has been argued that the medical datasets used by AI researchers 
are notoriously biased and that health care data is extremely male and extremely white (Dave Gershgorn, 
If AI is going to be the world’s doctor, it needs better textbooks(2018), available at 
https://qz.com/1367177/if-ai-is-going-to-be-the-worlds-doctor-it-needs-better-textbooks/.). In this 
context see also Obama administration report on Big Data that maps pathways for fairness and opportunity 
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healthcare, this means that biased predictions would provide better medical treatment to 

one group of people than another.238 For example, a machine learning study on predicting 

pneumonia revealed that the machine learning system was giving a lower risk score to 

patient who also have asthma.239 However, in reality the data were biased as the patients 

in the lower risk group were given extra care hence the inaccurate results.240 Ahmad et al. 

make two interesting observations in this respect.241 First, problems like these get lost in 

black box machine learning systems. Secondly, in medical image diagnosis where deep 

learning techniques are often used with excellent predictive power could be fooled into 

making mistakes which human experts would never make. These observations provide 

additional support for the need of some form of machine learning interpretability 

especially in the medical domain.       

 

Another interesting aspect in discussing bias is that many medical datasets are not as such 

biased but imbalanced. They are imbalanced as they simply reflect the population that 

suffers from a given condition.242 For example, as we already seen, in the field of 

mammography, there are abundant mammogram images but the majority of these images 

are normal and in cases where the mammogram does contain a suspicious lesions this is 

most of the times not cancerous and even the most cancerous lesions will not lead to the 

death of the patient.243 As we have also seen, in such cases where a class is unrepresented 

a typical technique used in machine learning is the application of specific data 

augmentation algorithms (i.e. a technique that artificially expands the size of a training 

                                                       
but also cautions against re-encoding bias and discrimination into algorithmic systems (Megan Smith, et 
al., Big Risks, Big Opportunities: the Intersection of Big Data and Civil Rights(2016), available at 
https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-
data-and-civil-rights.).    
238 Gershgorn,  7. 2018. In support of this argument Gershgorn notes that in 2017 a Stanford study claimed 
that an AI system was more accurate than dermatologists in diagnosis of malignant skin lesions from 
images. However, he states that the datasets of malignant and benign melanoma used overwhelmingly 
featured lighter skin (at 10).      
239 Muhammad Aurangzeb  Ahmad, et al., Interpretable Machine Learning in Healthcare, in PROCEEDINGS 

OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH 

INFORMATICS 560, (2018). 
240 Id. 
241 Id. 
242 Gershgorn,  11. 2018. 
243 Litjens, et al., ARXIV:1702.05747V2, 26 (2017). 
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dataset by creating modified versions of images in the dataset)244 to the unrepresented 

class.245 However, such techniques might also have the their own drawbacks and 

incorporate their own biases.  

 

Machine learning research focused on different approaches in tackling different forms of 

bias. Kusner et al. for example, presented a model of fairness that they refer to as 

counterfactual fairness.246 This model enabled them to develop algorithms that are able 

to consider the various social biases that may arise towards individuals based on ethically 

sensitive attributes and compensate for these biases effectively.247 They distinguish this 

type of algorithm from other algorithms that tackle bias by simply ignoring protected 

attributes such as gender, race or religion.  Nabi and Shpitser proposed in their work to 

model discrimination based on “sensitive features,” such as race or gender in relation to 

an outcome.248 A growing community is now examining matters of fairness and 

transparency in data analysis by addressing harmful effects of algorithmic bias from a 

variety of perspectives and frameworks.249 Thus, researchers are already addressing some 

of the factors that could be causing bias but it is also evident that it is not easy to pinpoint 

to one perfect technique as each technique has its own drawbacks. Furthermore, each 

technique could be incorporating new and different forms of bias. As Hardt et al. point 

out, a naïve approach might require to design an algorithm that ignores all protected 

                                                       
244 Jason   Brownlee, How to Configure Image Data Augmentation When Training Deep Learning Neural 
Networks(2019), available at https://machinelearningmastery.com/how-to-configure-image-data-
augmentation-when-training-deep-learning-neural-networks/. 
245 Litjens, et al., ARXIV:1702.05747V2,  (2017). 
246 Matt J.  Kusner, et al., Counterfactual Fairness, ARXIV:1703.06856V3 (2017). Their definition of 
counterfactual fairness incorporates the intuition that “a decision is fair towards an individual if it at the 
same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different 
demographic group” (at 1).  
247 Id. at, 9. See also other research work that tackles discrimination by developing algorithms incorporating 
other techniques including Niki  Kilbertus, et al., Avoiding Discrimination through Causal Reasoning, 
ARXIV:1706.02744V2 (2018).); see also Jon  Kleinberg, et al., Inherent Trade-Offs in the Fair Determination 
of Risk Scores, ARXIV:1609.05807V2 (2016).    
248 Nabi & Shpitser, ARXIV:1705.10378V4 1(2018). 
249 Id. See Sam  Corbett-Davies, et al., Algorithmic decision making and the cost of fairness, 
ARXIV:1701.08230V4 (2017).; Michael  Feldman, et al., Certifying and removing disparate impact, 
ARXIV:1412.3756V3 (2015).; Moritz  Hardt, et al., Equality of Opportunity in Supervised Learning, 
ARXIV:1610.02413V1 (2016).; F. Kamiran, et al., Quantifying explainable discrimination and removing 
illegal discrimination in automated decision making, 35 KNOWLEDGE AND INFORMATION SYSTEMS 
613(2013).  
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attributes such as a race, color, religion, gender, disability or family status.250 Such an 

approach, they point out, that is based on the philosophy of “fairness through 

unawareness,” is not helpful due to the existence of “redundant encodings”, ways of 

predicting protected attributes from other features.251 Furthermore, bias in machine 

learning can arise as much from human choices on how they design or train an algorithm 

as they can from human errors in judgment when interpreting the predictions.252 Hence 

why, different forms of biases in machine learning would always be present in one way or 

another and thus the question is whether there are mechanisms that could provide novel 

solutions to such problems. 

 

The contrast between human and machine learning biases is another interesting aspect 

in discussing machine bias. Nabi and Shpitser in examining the extent to which a specific 

approach is “fair” they note that the gold standard is human intuition.253 They argued that 

it is unfortunate that data analysis is based on statistical models that do not by default 

encode human intuitions about fairness and bias.254 However, the question arises 

whether human intuition about fairness and bias is or should be the baseline to assess 

machine learning bias. Hardt et al.255 argue that reliance on data can aid in quantifying 

and eliminating existing biases but they still point out that some scholars warned that 

algorithms can also introduce new biases or continue existing ones.256  

                                                       
250 Hardt, et al., ARXIV:1610.02413V1, 1 (2016). 
251 Dino  Pedreshi, et al., Discrimination-aware data mining, in PROCEEDINGS OF THE 14TH ACM SIGKDD 

INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (2008). As noted by Hardt, et al., 
ARXIV:1610.02413V1, 1 (2016).  
252 Regarding the interpretation of the predictions, it refers to, for example, how administrative agents and 
other decision-makers use these prediction outputs to implement different policies and everyday practices. 
See further, AI Now Institute, Algorithmic Impact Assessments: Toward Accountable Automation in 
Public Agencies(2018), available at https://medium.com/@AINowInstitute/algorithmic-impact-
assessments-toward-accountable-automation-in-public-agencies-bd9856e6fdde. 
253 Nabi & Shpitser, ARXIV:1705.10378V4 3(2018). 
254 Id. at, 1. 
255 Hardt, et al., ARXIV:1610.02413V1, 1 (2016). 
256 Solon Barocas & Andrew D.  Selbst, Big Data's Disparate Impact, 104 CALIFORNIA LAW REVIEW 
671(2016). See also Burrell who also argues that the claim that algorithms will classify more “objectively” 
cannot be taken at face value considering the degree of human that is still incorporated in designing the 
algorithms (Burrell, BIG DATA & SOCIETY, 3 (2016).). However, in this respect, at least as far as deep learning 
is concerned, as LeCun et al. noted the crucial aspect of “deep learning is that [t]he layers of features are 
not designed by human engineers: they are learned from data using a general-purpose learning procedure;” 
as LeCun et al. note deep learning will have many more successes in the near future as it necessitates very 
little engineering by hand (LeCun, et al., NATURE, 436 (2015).). 
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Furthermore, supervised machine learning algorithms present another different type of 

bias challenge, the so-called, bias-variance tradeoff (problem). Even if we manage to pass 

the challenge of collecting all the correct features, we still need some function to combine 

them to achieve the desired task.257 As we mentioned above, even the desired task itself 

could sometimes be controversial in medicine – for example in training an algorithm, is 

the desired task the prolongation of the life of the patient, ensuring a good quality of life 

for the patient or a balance of the two? Be that as it may, assuming a clear target can be 

set, the goal of supervised machine learning algorithms is to find the best possible 

mapping function (or target function) (f) for the output variable (y) given the input data 

(x).258 Any machine learning algorithm will have a prediction error that can be divided 

into three categories: bias error, variance error, irreducible error.259 The irreducible error 

cannot be reduced irrespective of the algorithm used. Bias are the simplifying 

assumptions made by the model in order to make the target function less difficult to 

learn.260 Thus, a model with high bias relies very little on the training data and 

oversimplifies the model.261 Variance is the amount that the estimate of the target 

function will change in the case where a different training dataset was used.262 Thus, a 

model with high variance heavily relies on the training data and does not generalize well 

on data which has not seen before.263 In supervised learning, models that usually have 

high bias and low variance will underfit. Underfitting occurs, when a model is not able to 

capture the underlying pattern of the data.264 Basically, the model is not able to obtain a 

satisfactorily low error value on the training set.265 In such instances, we will need to 

                                                       
257 Deo, CIRCULATION, 1922 (2015). 
258 Jason Brownlee, Gentle Introduction to the Bias-Variance Trade-Off in Machine Learning(2016), 
available at https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-
machine-learning/. 
259 Id. 
260 Id. 
261 Seema  Singh, Understanding the Bias-Variance Tradeoff(2018), available at 
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229. 
262 Brownlee. 2016. 
263 Singh. 2018. 
264 Id. 
265 GOODFELLOW, et al.,  109. 2016. 
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estimate the training error and use a loss function that is adapted to reflect what type of 

errors are more tolerable than others.266  

 

However, even if we manage to minimize the training error we might still have an 

algorithm with bad generalization ability. In other words, the algorithm might be still bad 

in giving the right medical diagnosis or treatment for new cases that it has never seen 

before. Models that usually have low bias and high variance will overfit. Overfitting occurs 

when the model captures the noise (artifacts) along with the underlying pattern in data.267 

In other words, overfitting takes place when the model learns the details and noise in the 

training data to the extent that it detrimentally affects the performance of the model on 

new data.268 Consequently, the gap between the training error and the test error269 would 

be too large.270 The goal of supervised machine learning algorithms is to achieve a low 

bias and a low variance. However, the problem is that increasing bias will decrease 

variance and vice-versa. In practice, we cannot calculate the real bias and variance error 

terms as we do not know the actual underlying target function.271 However, both bias and 

variance provide the tools to comprehend the behavior of machine learning algorithms in 

the quest of predictive performance.272 It is evident from the above, that there are multiple 

considerations that need to be taken into account in striking the best possible balance and 

that the perfect algorithm cannot exist.  

 

In this context, it is also interesting to refer to the “no free lunch theorem” we introduced 

above, that suggests that we must design a machine learning algorithm to perform well 

on a particular task.273 The way to do this, is by building a set of preference into the 

learning algorithm.274 When these preferences are aligned with the learning problems we 

need to solve, then this learning algorithm performs better.275 A learning algorithm could 

                                                       
266 Deo, CIRCULATION,  (2015). 
267 Singh. 2018. 
268 Brownlee. 2016. 
269 Test error is the accuracy of predictions on a dataset that the algorithm has never seen to before.  
270 GOODFELLOW, et al.,  110. 2016. 
271 Brownlee. 2016. 
272 Id. 
273 GOODFELLOW, et al.,  116. 2016. 
274 Id. 
275 Id. 
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be given a preference for one solution over another in its hypothesis space.276 This means 

that both functions are eligible but we show preference to one of them.277 Additionally, we 

may restrict the learner algorithm to choose from only a particular set of predictors.278 

Such restrictions are what we refer to as inductive bias as we bias the learner towards a 

particular set of predictors.279 The choice of such predictors is determined before the 

learner algorithm sees the training data consequently this choice should ideally be 

founded on some prior knowledge about the problem to be learned.280 On the one hand, 

choosing a more limited hypothesis group would probably avoid overfitting, on the other, 

it might cause a stronger inductive bias. 281 Hence why a balance needs to be struck. Some 

forms of bias are not necessarily bad, on the contrary, certain forms of bias could be even 

beneficial for a successful learner. As we have seen when discussing inductive bias, the 

incorporation of prior knowledge, biasing the learning process is inevitable to successfully 

design a learning algorithm.282 However, whereas human bias in some instances could be 

exposed or become explainable when humans provide justifications for their decisions, 

machine bias would be hidden. The medical domain is a particularly sensitive domain as 

bias could be indicating for example which patient should be prioritized in an intensive 

care unit or which one should get a transplant. Products liability law, provides a 

framework to identify product warning defects. However, the question remains whether 

and to extent this framework is fit for machine learning algorithms in medicine. Could for 

instance the current legal framework on product warnings address the question of 

machine learning bias and other inherent limitations? If not, how could warnings be 

adapted to address these challenges? As Goodfellow explains the “ideal [ML] model is an 

oracle that simply knows the true probability distribution that generates the data. Even 

                                                       
276 Id. at, 116. 
277 Id. at, 117. There are many ways of expressing preferences for different solutions and these different 
approaches are known as regularization; Goodfellow et al. define regularization as “any modification we 
make to a learning algorithm that is intended to reduce its generalization error but not its training error” 
(see at 117). Moreover, as Goodfellow et al. argue foundational concepts in the field of statistics such as 
parameter estimation, bias and variance are useful to characterize notions of generalization, underfitting 
and overfitting (at 120).   
278 Shalev-Shwartz & Ben-David, 16 (2014). 
279 Id. 
280 Id. 
281 Id. at, 17. 
282 Id. at, 116. 
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such a model will still incur some error on many problems.”283 It is in this challenging 

environment in the medical domain that this paper examines the type of warnings 

appropriate for ML medical devices. 

 

10. Diverse medical opinions - the example of intensive care units 

 

Real time prediction of clinical interventions is one of main challenges faced by clinicians 

within intensive care units (ICUs).284 In the ICU setting clinical decision-making takes 

place in an environment of limited knowledge and high uncertainty; for instance, only 10 

of the 72 ICU interventions that were evaluated in randomized control trials have shown 

to relate to improve outcomes.285 This task gets even more complicated due to data 

sources that are sparse, heterogenous, noise and outcomes that are imbalanced.286 In 

these complex environments, different machine learning techniques could be of use in 

order to predict the onset and weaning of multiple invasive interventions.287 For example, 

prolonged dependence on mechanical ventilation or premature extubation are related to 

increase complications of the health of a patient and higher costs.288 It is interesting for 

the purposes of this paper that clinical opinion on the most appropriate protocol to be 

followed for weaning patients off of a ventilator differs.289 Thus, an additional opinion by 

a machine learning algorithm to the already diverse physicians’ opinions could place some 

physicians in the situation where they would need to choose between the machine 

learning algorithm’s prediction of what needs to be done or their own initial decision.290 

In this respect, Prasad et al. have worked on developing a machine learning decision 

                                                       
283 They note that the error incurred by an oracle making predictions from the true distribution p(x,y) is 
called the Bayes error; GOODFELLOW, et al.,  114. 2016. 
284 Suresh, et al., ARXIV:1705.08498V1, 1 (2017). 
285 Gustavo A Ospina-Tascón, et al., Multicenter, randomized, controlled trials evaluating mortality in 
intensive care: doomed to fail?, 36 CRITICAL CARE MEDICINE (2008). As noted by Suresh, et al., 
ARXIV:1705.08498V1, 2 (2017). 
286 Suresh, et al., ARXIV:1705.08498V1, 1 (2017). 
287 In particular, machine learning could be used to predict intervention tasks concerning invasive 
ventilation, non-invasive ventilation, vasopressors, colloid boluses and crystalloid boluses; See work done 
by Suresh id.  
288 Niranjani Prasad, et al., A reinforcement learning approach to weaning of mechanical ventilation in 
intensive care units, ARXIV PREPRINT ARXIV:1704.06300, 1 (2017). 
289 Id. 
290 A key question would be how machine learning algorithms would impact medical malpractice liability 
of clinicians; how should tort liability should apply to providers who are not aware of basis of the treatment 
they recommend? (Price, Medical Malpractice and Black-Box Medicine 295. 2018.   
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support tool to predict the time-to-extubate readiness of a patient and to recommend a 

personalized regime of sedations dosage and ventilator support.291 The aim of such a tool 

is to recommend a personalized treatment protocol.292 Specifically, they used off-policy 

reinforcement learning algorithms to determine the most appropriate action to be taken 

at a given patient state from sub-optimal historical ICU data.293 They argue that their 

paper adopts a novel approach as they incorporate a larger number of possible predictors 

of weaning readiness in a 32-dimensional patient state representation compared with 

previous research that normally limited features for classification to only a couple of vital 

signs.294 Moreover, they make use of existing clinical protocols to inform the design and 

tuning of a reward function. In this respect it is interesting to observe that machine 

learning systems, as the one in question, are aimed as decision support tools rather than 

autonomous machines. However, even such assisting medical machine learning tools 

should be distinguished from conventional assisting medical systems or software. 

Machine learning medical tools do not only provide information or carry out a simple 

processing of information but carry out an assessment themselves and provide an opinion 

that is conventionally reserved for the physician. In other words, the physician would not 

be simply provided with additional information to aid her assessment but would be 

presented with an “opinion” as to what should be done. Consequently, the physician 

would either have to disregard this opinion or execute it. Thus, we might be faced with 

situations where the physician could be the one who mechanically executes the “opinion” 

of the machine. This raises interesting questions on medical malpractice, question on 

consent and products liability law.  

 

Moreover, there are challenges that need to be addressed or at least be aware of when 

building machine learning tools for an ICU. For example, there are factors that could 

potentially influence the patient’s readiness for extubation, including some that are not 

noted in ICU chart data, such as patient’s inability to protect their airway due to muscle 

                                                       
291 Prasad, et al., ARXIV PREPRINT ARXIV:1704.06300,  (2017). 
292 Id. at, 1. 
293 Id. Reinforcement learning has been also explored in other areas including the sequence of drugs to be 
administered in HIV therapy or cancer treatment; managing anemia in hemodialysis patients and 
regulating insulin in diabetics; this process is mainly based on estimating the value in terms of clinical 
outcomes of various treatment decisions given the state of the patient (id. at, 2.)  
294 Id. at, 3. 
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weakens.295 Additionally, there are a great variety of sedatives and ventilator settings that 

can be leveraged during weaning.296 Moreover, past treatment and trajectories, in 

identifying a successful extubation at time t, provides us only with an upper bound on the 

true time to extubate; on the other hand if a breathing trial was conducted and showed 

that it was unsuccessful, it leads to uncertainty how premature the intervention was.297 

The above, indicate the difficulties both when learning the policy at training stage and 

when evaluating the policy.298 It appears that there are multiple interdependent complex 

factors affecting a decision to be taken at a particular time in an ICU. One the one hand, 

machine learning technology is particularly suited to consider all these factors, draw 

patterns and make extremely helpful suggestions. On the other hand, the problem 

remains, how does a physician properly assess the ML “opinion” which might be even be 

contrary to her medical opinion on what needs to be done? As we have seen above, a 

machine learning algorithm irrespective of how accurate has proved when tested still 

lacks, for example, “common sense”. But one may ask, is a physician’s common sense 

always useful? These and other similar questions would arise in such settings where 

opinions vary and the machine learning algorithm would be providing an additional 

opinion. While, the physicians would be able to justify their opinions, the machine 

learning algorithm would not be able to do that. We would of course know how well the 

ML algorithm performed when tested (i.e. how well it generalized) but still we won’t know 

why the ML reaches a particular prediction. In a setting such as the one at an ICU where 

medical opinions might vary and factors to be considered might not be clear, the need for 

some form of ML explanation on the prediction made might be even greater. Regarding 

the novel interaction between the physician and the AI medical devices, Price makes an 

interesting comparison between clinical decision-support software299 that is designed to 

help physicians diagnose and treat patients with what he calls “black-box medicine.”300 

                                                       
295 Id. at, 2. 
296 Id. 
297 Id. 
298 Id. 
299 See Randolph A. Miller & Sarah M. Miller, Legal and regulatory issues related to the use of clinical 
software in health care delivery, in CLINICAL DECISION SUPPORT 424, (Robert  Greenes ed. 2006). As noted 
by Price, Medical Malpractice and Black-Box Medicine 300. 2018. 
300 By “black-box medicine” he refers to the combination between the exponential wealth of health data and 
rapid development of machine-learning algorithms that enable this new form of medicine (“black-box 
medicine”). See Price, Medical Malpractice and Black-Box Medicine 295. 2018.  
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In this regard, Miller and Miller point out, that clinical decision-support software solely 

“augments the physician’s existing knowledge by providing further information.”301 

Consequently, Price argues, that the software provides information but the physician 

intervenes to make the final choice.302 He argues that this knowledgeable intervention is 

precisely what is different about black-box medicine. Because neither the providers nor 

the developers know the relationships underlying the recommendations of black-box 

medicine, the physician cannot be at the final step of the process of care. Thus, he 

continues, once the physician decided to use a particular black-box algorithm then the 

physician cannot understand and thus verify the algorithms recommendation against the 

physician’s body of substantive expertise; at this stage, the physician has a choice of either 

accepting or not the algorithm’s recommendation.303 He points out, that this challenge 

might become even more complex when the algorithm suggests taking an unrelated drug 

based on previously unknown secondary effects or modifying a drug’s dosage or schedule 

without conforming to existing medical knowledge. In such instances, he concludes, that 

imposing the same standard of negligence would make little sense.304 Indeed, it appears 

that traditional legal frameworks in regulating the interaction between physician, 

producer of conventional medical devices and patient in certain aspects might not be fit.  

 

The objective of minimizing both the training and test errors in order to avoid illusionary 

successful prediction capacities poses another interesting challenge. A successful 

machine learning algorithm should have the ability to generalize well and thus be able to 

make successful predictions or categorizations for cases that it has never seen before. A 

learning algorithm might have low training error during training but that does not 

necessarily mean it would also have to a low-test error when exposed to completely new 

cases it has never seen before. Generally, models that are highly complex (including those 

with a huge number of features) may perform better at minimizing training error but tend 

to generalize poorly as they tend to overfit to the data.305 In other words there is a balance 

that needs to be struck. On one the hand, we might have complex models (including the 

                                                       
301 Miller & Miller,  433. 2006. 
302 Price, Medical Malpractice and Black-Box Medicine 300. 2018. 
303 Id. at, 300-301. 
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ones with huge number of features) that could be necessary for certain uses. On the other 

hand, that models generalize well to new data sets.306 Therefore, it appears that this 

delicate balance might need to be coupled with some form of interpretability so the 

physician and patient have at least some idea on how the algorithm assesses a particular 

case.     

 

Finally, another challenge in deploying ML devices in medicine, not only in the ICU 

context, concerns the one on the approval of ML medical devices. The approval of new 

drugs or other new treatments comes in several possible forms.307 First, the treatment is 

generally scientifically comprehended.308 Second, the use of clinical trials is to show the 

validity of a treatment method. Finally, the validity of the treatment can be confirmed by 

third parties as well other than the sponsoring company or other post market surveillance 

mechanisms. In this respect, it is argued that the validation of complex and implicit 

algorithmic models faces a number of challenges.309 First, the black-box nature of the 

algorithms means that they cannot be comprehended on a scientific level. Regarding 

clinical trials, the implicit and complex nature of algorithms are unlikely to be fit for 

mechanistic exploration by classic clinical trial methodology;310 also, some of the benefits 

of machine learning algorithms in medicine rely on avoiding a slow and costly clinical 

trial. Another hurdle concerns the role of FDA in validating medical algorithms. The FDA 

currently lacks the expertise and resources to independently replicate the manufacturers’ 

results: at best it can provide some procedural oversight in ensuring that data collection, 

consolidation and analysis methods are suitable.311         

 

 

                                                       
306 Id. at, 1923. 
307 Price, HARV. J. L. & TECH. , 440 (2015). 
308 Having said that, it should be pointed out that although the mechanisms of action of a drug is generally 
comprehended there are exceptions as well; for example, aspirin has been commonly available since the 
beginning of the twentieth century but its mechanism of action was only understood in 1971 (id.); It thus 
appears that the argument that the mechanism of medical algorithms is not transparent and this should 
subject them to more stringent rules might not be a strong argument.         
309 Id. at, 441. 
310 Because personalized medicine relies on particular patient profiles, it is difficult to aggregate similar 
patients (id.).  
311 Id. at, 442. 
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11. Warnings and machine learning in medicine 

 

a. The relationship between the ML medical algorithm, the 

physician and the patient  

 

There are a series of legal concerns arising out of the deployment of machine learning 

algorithms in medicine. Interestingly, we have seen that in the medical domain, unlike 

the vehicles one, the first fully-autonomous medical devices have already been 

deployed.312  

 

There are at least three main ways that ML algorithms could be interacting with 

physicians and patients. First, the ML system could be autonomously taking certain 

decisions and performing certain tasks with regards to a patient; secondly, the ML system 

could be autonomously providing information to the physician concerning diagnosis, 

treatment or management of a patient; finally, the autonomous ML system could be 

providing medical information for example on diagnosis directly to the patient.  In all 

three scenarios, sooner or later, there will be allegations that the ML prediction adversely 

affected the health of a patient and/or caused the patient’s death. The question will then 

be raised, how should law deal with such issues?  

 

Regarding the first scenario, in the context of autonomous vehicles, Geistfeld notes that 

to date, scholars reached the share conclusion that elimination of a human driver will shift 

responsibility onto manufacturers as a matter of products liability and that litigation 

would particularly focus on design or warning defects.313 Similarly, it appears that liability 

issues concerning a fully autonomous ML system that for example takes a decision and 

then proceeds by itself to administer medication to a patient (scenario one above) would 

be examined under products liability law.314  

                                                       
312 See first approved AI medical device, FDA press release - FDA permits marketing of artificial 
intelligence-based device to detect certain diabetes-related eye problems. April 11, 2018. 
313 Geistfeld, CALIF. L. REV., 1619 (2017). 
314 At EU level the products liability framework is governed by the products liability Directive (Council 
Directive (EEC) No 85/374 [1985] OJ L210/29). See short summary of the underlying principles at 
Commission Staff Working Document; Liability for emerging digital technologies; Accompanying the 
document - Communication from the Commission to the European Parliament, the European Council, the 
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Regarding the other two scenarios, the liability question could get more challenging as 

arguably information generated by ML algorithms could be assessed under policy 

considerations governing services or products.315 Moreover, it has been considered 

whether algorithms should be subject to new legal frameworks beyond the traditional 

ones governing products and services.316 Specifically, it has been considered whether ML 

systems used for medical decision-making should be given a unique legal status similar 

to personhood.317   Be that as it may, if the ML algorithm provides advice to the physician 

on, for example, what dosage of medication to administer to a patient, such an activity 

would probably constitute a service. Having said that, it might still be argued that such 

ML specialized medical predictions given, for example, to a non-specialist physician or a 

nurse should be examined under similar policy considerations applicable to products.318 

In other words, it may be argued that policy considerations governing products liability 

are better suited for such ML medical predictions rather than policy considerations 

governing negligence that is applicable to services.319  

                                                       
Council, the European Economic and Social Committee and the Committee of the Regions; Artificial 
Intelligence for Europe (2018).). The Court of Justice of the EU (CJEU) held that the liability of a service 
provider when using products that fall within the scope of the Directive, such as in the course of providing 
treatment to a patient, does not the fall within the scope of the Directive (see Centre hospitalier 
universitaire de Besançon, EU:C:2011:869, paragraph 27). Similarly, neither in the US healthcare 
providers or healthcare facilities are held strictly liable for defects in the products they sell, use or provide 
(see Hollander v. Sandoz Pharm. Corp., 289 F. 3d 1193, (10th Cir. 2002). In this respect see Miller & Miller. 
2006. who argues against applying strict products liability also for clinical decision-support software to 
providers and hospitals; as noted by Price, Medical Malpractice and Black-Box Medicine 298. 2018. 
Regarding the long-time immunity of software to product liability legal actions see Frances E Zollers, et al., 
No more soft landings for software: Liability for defects in an industry that has come of age, 21 SANTA 

CLARA COMPUTER & HIGH TECH. LJ (2004).  
315 In this respect see for example, Joseph L Reutiman, Defective Information: Should Information Be a 
Product Subject to Products Liability Claims, 22 CORNELL JL & PUB. POL'Y (2012).; Charles E Cantu, A 
Continuing Whimsical Search for the True Meaning of the Term Products Liability Litigation, 35. MARY'S 

LJ (2003). 
316 Karni A Chagal-Feferkorn, Am I an Algorithm or a Product: When Products Liability Should Apply to 
Algorithmic Decision-Makers, 30 STAN. L. & POL'Y REV. (2019). 
317 Consequently, under this reasoning a wrongful diagnosis would be based on medical malpractice than 
products liability (see for more details Jason Chung & Amanda Zink, Hey Watson-Can I Sue You for 
Malpractice-Examining the Liability of Artificial Intelligence in Medicine, 11 ASIA PACIFIC J. HEALTH L. & 

ETHICS (2017).  
318 In this context see mutatis mutandis Reutiman, CORNELL JL & PUB. POL'Y,  (2012).     
319 See further Powers who examines a number of reasons that are usually raised in arguing that product 
cases are distinct from services (William C Powers Jr, Distinguishing Between Products and Services in 
Strict Liability, 62 NCL REV. (1983).; see also Alheit who looks at the products-services distinction in terms 
of causation (K Alheit, The applicability of the EU Product Liability Directive to software, 34 COMPARATIVE 

AND INTERNATIONAL LAW JOURNAL OF SOUTHERN AFRICA, 202 (2001)); Looking at the form of liability in 
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The question whether policy considerations governing services or products is a better 

basis to assess liability issues associated with ML medical information is an interesting 

and challenging question in itself. However, regarding warning defects, which is the 

subject of this paper, the elements that are considered and balances that are struck in 

examining the adequacy of warnings under either negligence or products liability law are 

substantially similar.320  Therefore, this paper draws inspiration from the doctrine on 

products liability law.  

 

It aims to identify a framework of warnings that is suitable for ML medical systems when 

carrying out medical tasks, such as providing medical information on, for example, 

diagnosis or treatment. The vast majority of states in the 1960s and 1970s have adopted 

the rule of strict products liability under which design and warning defects could be dealt 

with.321 Consequently, the commercial distributor of a product could be subjected to strict 

liability for the physical harms proximately caused by a defect in the product.322 Courts 

have adopted a definition of defect, which is the precondition for strict liability, that 

distinguishes between manufacturing, design and warning defects.323  

 

                                                       
terms of causation see also Westerdijk who argues that the question of causality in such cases also depends 
on the foreseeable use of that software (RJJ Westerdijk Produkteaansprakelijkbeid voor software 
(1995)243 as noted by K Alheit, The applicability of the EU Product Liability Directive to software, 34 
COMPARATIVE AND INTERNATIONAL LAW JOURNAL OF SOUTHERN AFRICA, 207 (2001).); Traille argues that 
information is not a single category to which the same form of liability can be applied, the whole context in 
which the information is delivered should be considered in order to decide which form of liability should be 
applied. In Triaille’s opinion intelligent software is ‘information’ that to which products liability law does 
not apply (J Triaille, “The EEC Directive on product liability and its application to databases and 
information” (1991) Computer Law and Practice 217 at 222 as noted by id. at, 206.); see supra Price who 
makes an interesting comparison between clinical decision-support software that is designed to help 
physicians diagnose and treat patients with what he calls “black-box medicine.” (Price, Medical Malpractice 
and Black-Box Medicine 300. 2018.; finally, see Miller & Miller,  424. 2006.     
320 A negligence-based test for a service or a risk-utility test/consumer expectation test for a product would 
very much consider the same elements and balances. In this context, see early works by Dawn Pelletier, Is 
There a Distinction between Strict Liability and Negligence in Failure to Warn Actions, 15 SUFFOLK UL 

REV. (1981). and Richard L Cupp Jr & Danielle Polage, The Rhetoric of Strict Products Liability Versus 
Negligence: An Empirical Analysis, 77 NYUL REV. (2002). 
321 Geistfeld, CALIF. L. REV., 1632 (2017). 
322 RESTATEMENT (SECOND OF TORTS) §402A (AM. LAW INST. 1998); id.  
323 Id. Strict liability should be distinguished from absolute liability, as Supreme Court of California held, 
that “[f]rom its inception…strict liability has never been, and is not now, absolute liability” (Daly v. General 
Motors Corp., 20 Cal. 3d 725, (  Cal. 1978).). 
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Additionally, the findings in this paper could provide inspiration to possible legislative 

initiatives on warnings. Appropriate warnings for ML medical systems would create a 

constructive relationship between ML medical systems (ML manufactures), physicians 

and patients that would provide better healthcare and encourage the speedier 

development and safe deployment of ML in medicine. Moreover, developing such a 

constructive relationship would shield the manufacturers of ML algorithms and 

physicians from uncertainty concerning their legal obligations that could be stifling 

machine learning innovation.324 At the same time it would importantly provide a better 

healthcare serving the best interests of the patients.  

 

Before embarking into a deeper analysis on warnings, it is useful to reiterate the 

distinction drawn at the outset between conventional products and ML medical systems. 

As explained above, a conventional medical device in effect mechanically perform tasks 

largely based on basic rules of physics, chemistry and biology. In contrast a ML system it 

has an inductive reasoning capability that allows it to generalize from “cases seen to infer 

information about new cases unseen.”325 Therefore, a ML medical system could, for 

example, be providing information to a general practitioner that is normally provided by 

a specialist physician. It is this intelligent character of the AI system that creates a new 

relationship between the AI system and the physician. This is also why a collaboration 

between an AI system and a physician was shown in many cases to outperform physicians 

or AI systems when either acting alone. This is also the reason why AI machines and 

physicians should not be in competitive but a cooperative relationship. However, there 

could be also challenges emerging out of this collaboration. On the basis of the 

                                                       
324 The European Commission stated in its Communication on Artificial intelligence for Europe that in order 
to fully benefit from the opportunities presented by these emerging new technologies a clear and stable legal 
framework will stimulate investment and, in combination with research and innovation, will help bring the 
benefits of these technologies to business and citizens. It is also noted that it is necessary to examine 
whether the current rules at EU and national level for safety and liability are appropriate and whether for 
manufacturers and service providers the legal framework continues to deliver an adequate level of legal 
certainty (see further European Commission,  2. 2018.). Similarly, Geistfeld points out in the context of 
autonomous vehicles which could be also applicable in the medical domain the rate at which the market 
converts from conventional autonomous vehicles depends on the price that consumers are requested to pay 
in order to adopt the new technologies. He indicates two reasons, where systematic legal uncertainty about 
the manufacturer liability raises the cost of an autonomous vehicle, thereby increasing the price and 
reducing consumer demand for these new technologies (Geistfeld, CALIF. L. REV., 1617 (2017).).   
325 FINLAY & DIX,  32. 1996. 
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information provided by the AI system the general practitioner or nurse might not find it 

necessary to refer the patient to a specialist or proceed to carry out a medical procedure 

on a patient. This raises a number of issues concerning the liability of the manufacturer 

of such ML medical systems when these ML systems autonomously perform medical tasks 

such as diagnosis or prognosis. These ML systems could be affecting the current 

relationship between physicians, manufactures of ML systems and patients.  In this 

regard, it is also interesting to refer to the distinction drawn by Price between 

conventional medical software and ML medical algorithms. As we saw, Price explains that 

a conventional medical software provides information but the physician intervenes to 

make the final choice.326 As he points out this knowledgeable intervention is precisely 

what is different about black-box medicine. Because neither the providers nor the 

developers know the relationships underlying the recommendations of black-box 

medicine, the physician cannot be at the final step of the process of care. Thus, he 

continues, once the physician decided to use a particular black-box algorithm, then the 

physician cannot understand and thus verify the algorithms recommendation against the 

physician’s body of substantive expertise; at this stage, the physician has a choice of either 

accepting or not the algorithm’s recommendation.327 He points out that this challenge 

might become even more complex when the algorithm suggests taking an unrelated drug 

based on previously unknown secondary effects or modifying a drug’s dosage or schedule 

without conforming to existing medical knowledge.  

 

Consequently, physicians and patients could be alleging that they were not aware of the 

potentials and limitations in a ML medical prediction due to lack of adequate information 

(warning). Specifically, the patient could be alleging that she did not give her informed 

consent to the physician as she did not understand the ML medical prediction on which 

the physician’s actions were based. Therefore, the crux of matter concerns the type of 

information that a manufacturer should be providing to the physician considering that 

the physician would be acting as a learned intermediary328 and considering that the 

                                                       
326 Price, Medical Malpractice and Black-Box Medicine 300. 2018. 
327 Id. at, 300-301. 
328 Further explained below.  
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manufacturer would be held to the standard of an expert in the field.329 Therefore, the 

manufacturer should be providing information (warning) concerning the ML medical 

prediction to the physician in a manner appropriate for her expertise that would allow the 

physician to obtain the patient’s informed consent.330 After the physician is given an 

adequate warning appropriate for her expertise, she should then “translate” this 

information for the patient in her verbal explanation in order to obtain the patient’s 

informed consent.331     

 

Identifying what should constitute appropriate information (warning) for ML medical 

devices, as noted above, would create a constructive relationship between ML medical 

systems (ML manufacturers), physicians and patients that would provide better 

healthcare and encourage the speedier development and deployment of machine learning 

in medicine.  

 

b. Warnings and specificities in medicine 

  

Designing warnings even for conventional products could be a hard task. As stated in 

Restatement (Third) of Torts on products liability (hereinafter Restatement (Third)) §2 

comment i, “no easy guideline exists for courts to adopt in assessing the adequacy of 

product warnings and instructions.”332 Be that as it may, Restatement (Third) §2 

comment i also states that warnings are necessary to: 

 

“…allow the user or consumer to avoid the risk warned against by making an informed 

decision not to purchase or use the product at all and hence not to encounter the 

risk…warnings must be provided for inherent risks that reasonably foreseeable product 

users and consumers would reasonably deem material or significant in deciding whether 

to use or consume the product. Whether or not many persons would, when warned, 

nonetheless decide to use or consume the product, warnings are required to protect the 

                                                       
329 Point raised by Mark Geistfeld (NYU Law School) in a discussion we had on this subject 
330 Id.  
331 Id. 
332 RESTATEMENT (THIRD) OF THE TORTS: PRODCUTS LIABILITY (1998). 
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interests of those reasonably foreseeable users or consumers who would, based on their 

own reasonable assessments of the risks and benefits, decline product use or 

consumption.”333  

 

The US Court of Appeals for the Ninth Circuit in Davis explained that “[w]hen, in a 

particular case, the risk qualitatively (e.g., of death or major disability) as well as 

quantitatively, on balance with the end sought to be achieved, is such as to call for 

a true choice judgment, medical or personal, the warning must be given.”334 In other 

words, products, such as ML medical devices, that encompass qualitative and quantitative 

medical and personal risks and hence requiring the exercise of a true choice judgment 

should be accompanied by adequate warnings. The warning helps to establish how the 

product will actually perform, which can be different from a more demanding expectation 

of how the product should perform.335 If the design of the product was the cause of the 

product performing in an unreasonably dangerous manner, the actual performance 

would frustrate the consumer’s reasonable expectation of how the product should have 

performed and this would constitute a design defect.336  

 

                                                       
333 Id. at, § 2 cmt i. See also Watkins v. Ford Motor Co., 190 F. 3d 1213, (11th Cir. 1999).  
334 Davis v. Wyeth Laboratories, Inc., 399 F.2d 121 (9th Cir. 1968). 
335 Geistfeld, CALIF. L. REV., 1641 (2017). In this context, Geistfeld uses the example of a warning that a 
vehicle does not have an airbag. In the case of an accident, the airbag will obviously not deploy and this 
cannot be treated as a malfunction. However, while the consumer does not expect an airbag to deploy in 
the case of an accident, she still has reasonable expectations that the vehicle would have a functioning airbag 
if that design feature were necessary for the safe operation of the vehicle. Geistfeld notes that a warning that 
the vehicle provides no airbags would not defeat this reasonable expectation of safety. Showing that the 
omission renders the design unreasonably dangerous, the plaintiff would be also showing that this design 
frustrates the ordinary consumer’s reasonable expectations of safe product performance. He indicates that 
some courts refer to this liability rule as the “modified” consumer expectation test in order to differentiate 
it from the (ordinary) consumer expectation test applicable to product malfunctions. In this regard he 
points out that, so formulated, the modified consumer expectation test is substantively equivalent to risk-
utility test which is a cost-benefit examination that requires any design change with a disutility (or cost) 
that is less than the correlated reduction of risk (or safety benefit) (see RESTATEMENT (THIRD) OF THE 
TORTS: PRODCUTS LIABILITY § 2 cmt. d. 1998. (Geistfeld, CALIF. L. REV., 1642 (2017).). § 2 cmt. d of 
Restatement (Third) of the Torts provides for a reasonableness (“riskutility balancing”) test; specifically, it 
states that “the test is whether a reasonable alternative design would, at a reasonable cost, have reduced the 
foreseeable risks of harm posed by the product and, if so, whether the omission of the alternative design by 
the seller or a predecessor in the distributive chain rendered the product not reasonably safe. (This is the 
primary, but not the exclusive, test for defective design).”           
336 Geistfeld, CALIF. L. REV., 1642 (2017).  
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It is therefore evident, that the aim of warning is to provide a clear and unambiguous 

information to the consumer in order to allow the consumer to make an informed decision 

whether to purchase or use the product (or in the context of certain ML medical systems, 

whether to follow the prediction of the ML algorithm). This quest is even more 

challenging considering that physicians and patients might have unrealistic expectations 

from ML devices. Even the glamor of the term “artificial intelligence” might be sometimes 

creating the unrealistic expectations. This risk appeared more than half a century ago, 

where an intermediate court in Louisiana considered whether mechanical robots driving 

vehicles (what we now often referred to as to autonomous vehicles) will be held to a higher 

standard of care than vehicles driven by humans.337 It is interesting how the court 

distinguished the capabilities of machines with those of human drivers. It held that:  

 

“A human being, no matter how efficient, is not a mechanical robot and does not possess 

the ability of a radar machine to discover danger before it becomes manifest. Some 

allowance, however slight, must be made for human frailties and for reaction, and if any 

allowance whatever is made for the fact that a human being must require a fraction of a 

second for reaction and then cannot respond with the mechanical speed and accuracy 

such as is found in modern mechanical devices, it must be realized that there was nothing 

that Reuter, a human being, could have done to have avoided the unfortunate result which 

the negligence of Mrs. Arnold brought upon herself.”338       

 

Therefore, the challenge concerns, how should the manufacturer of ML medical systems 

adequately warn physicians and consequently patients about the risks involved? In the 

context of autonomous vehicles, Geistfeld explains how the systemized driving behavior 

of autonomous vehicles can resolve the warning challenge.339 He explains how the 

aggregate driving performance of the fleet could be providing the necessary data for 

warnings about the inherent risks of crash. This information would be also of particular 

use in designing adequate warnings in medicine. In addition to this information, in 

                                                       
337 David C Vladeck, Machines without principals: liability rules and artificial intelligence, 89 WASH. L. 
REV., 130-131 (2014). 
338 Arnold v. Reuther, 92 So. 2d 593, (La. Ct. App. 1957). 
339 Geistfeld, CALIF. L. REV., 1654 (2017). 
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certain cases in medicine, it might be also necessary to accompany ML medical 

predictions with information that addresses specificities in medicine. As we have seen 

there are distinct challenges in developing and deploying ML systems in healthcare as 

well as tradeoffs inherent in medical decisions that need to be explained by the physician 

to the patient in order to obtain the patient’s informed consent.  

 

Regarding the challenges in developing ML systems in medicine, we have first seen that 

diagnosis, treatment and management of patients might not always constitute clear 

binary classification tasks. Defining the target in medicine when training ML algorithms 

might prove challenging especially in cases where targets are not clear and encompassing 

many tradeoffs. Therefore, on the one hand, ML systems might be of particular use in 

complex medical decisions but on the other, such complex medical decision involve a 

number of tradeoffs. Additionally, the selection of features in training ML algorithms 

could be a challenging task in medicine and that could reflect on, for example, the ML 

recommendation (prediction) for a treatment. For example, we saw that in some 

instances, clinical staff may have a feeling about the patient’s state and preferentially 

record results, which could be later used as features to train algorithms, that concur with 

that understanding.340 Furthermore, as we have seen in many cases there is no agreement 

on the labeling of the data used in training. Good predictive performance labels are based 

on certain medical definitions and they are only as good as the underlying criteria.341 

Similarly, it might be tempting to use the actual behavior of clinicians as the correct labels, 

but they could very well not be.342 Additionally, the issue of warnings gets more 

challenging when it comes to medical devices based on deep learning architectures. As we 

have seen, although these architectures are delivering substantial improvements 

compared to conventional machine learning algorithms, many scientists and researchers 

remain skeptical of their application to the medical domain.343  Deep learning models are 

used as a black-box without the researchers be able to explain why is in certain cases 

successful or without the ability to modify them in cases where there are misclassification 

                                                       
340 Hug, et al., CRIT CARE MED. ,  (2011). 
341 Ghassemi, et al., ARXIV:1806.00388V2, 4 (2018). 
342 Id. 
343 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 16 (2017). 
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problems.344 Also, many deep neural networks could easily reach wrong predictions when 

some noise is applied to a medical image.345 Moreover, in order to train effectively deep 

learning models, it is require to have large sets of training data and thus rare diseases or 

events might not be well suited to deep learning.346 Similarly, for many applications, raw 

data cannot be directly used as training input for deep neural networks.347 Thus, in 

addition to the burden of transforming this raw data into appropriate training inputs, as 

explained above, labeling of these data carries its own separate challenges. Other ML 

challenges in medicine arise from the objective to make personalized predictions using 

large volumes of noisy and biased data.348 We have also seen that human learners can rely 

on common sense to filter out random meaningless learning conclusions.349 Whereas, 

when the task of leaning is carried out by a machine one should provide well defined 

principles that will shield the program from reaching useless or senseless conclusions.350 

This task carries its own challenges and has its own implications. It was also explained 

that machine learning in medicine includes helping physicians to choose between a 

selection of known interventions and even recommend an off-label use of an approved 

intervention. However, off-label recommendations pose their own challenges when the 

physician is given such a recommendation and needs to take a decision whether to go 

ahead with this recommendation. Physicians would have to take a decision in this respect 

despite that relationships underlying the recommendations of “black-box medicine” are 

not known.351 Furthermore, the use of ML in wearable, implantable and ambient sensors 

are used to continuously monitor certain features related to health and wellbeing.352 Such 

devices could have different legal implications on warnings as the physician might not be 

even present or aware when the ML prediction is given to the patient. In the case where a 

physician is present the warning implications might change as the learned intermediary 

doctrine could be applicable that limits recovery against manufacturers where doctors 

                                                       
344 Id. at, 17. 
345 Id. 
346 Id. 
347 Id. 
348 Ghassemi, et al., ARXIV:1806.00388V2, 1 (2018). 
349 Shalev-Shwartz & Ben-David, 2 (2014). 
350 Id. 
351 Price, Medical Malpractice and Black-Box Medicine 300. 2018. 
352 Ravì, et al., IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 13 (2017). 
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prescribe drugs or medical devices to patients.353 This doctrine will be further examined 

below. Additionally, we have seen the problem of bias and fairness in designing ML 

algorithms as well as medical datasets that are not as such biased but imbalanced. 

Algorithmic bias in medicine, beyond fairness, could have different implications from 

other domains such as in cases where ML algorithms are used by public administrative 

bodies in determining, for example, whether certain social benefits should be granted or 

not to certain applicants. In the case of public bodies using ML systems to take 

administrative decisions, constitutional and administrative law would play a distinct role 

when deploying such systems.  In healthcare, there could be similar but also other distinct 

sensitive balances that would need to be struck when deploying ML systems for medical 

tasks. Finally, in medicine, the physician together with the patient are discussing the 

benefits and risks for a proposed treatment in order to obtain the patient’s informed 

consent. Patients’ expectations from treatment outcomes might differ and different 

patients might be willing to take different risks.  

 

Therefore, considering the ML medical specificities, how should ML warnings be 

designed?  Providing the classification accuracy of an algorithm (the accuracy of the 

algorithm for its predictions when tested on data that it has never seen before) would be 

providing valuable information to the physician and consequently the patient. However, 

in many cases, this classification accuracy might not be giving adequate information 

(might too general and more precise information might be needed for the particular 

patient) for reasons explained above. In addition, testing the performance of an algorithm 

in the first place carries a number of challenges.354 There are different metrics to evaluate 

the performance of ML algorithms and each carries its own drawbacks.355  

                                                       
353 Price, Medical Malpractice and Black-Box Medicine 298. 2018. See Timothy S Hall, Reimagining the 
Learned Intermediary Rule for the New Pharmeceutical Marketplace, 35 SETON HALL L. REV. (2004). 
354 See tweet by Krysztof Geras (August 10, 2019); see also Yoshua Bengio & Yves Grandvalet, No unbiased 
estimator of the variance of k-fold cross-validation, 5 JOURNAL OF MACHINE LEARNING RESEARCH 
1089(2004). 
355 They include logarithmic loss, area under the curve (AUC) and confusion matrix; see Aditya Mishra, 
Metrics to Evaluate your Machine Learning Algorithm(2018), available at 
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234. 
The metrics that are chosen to evaluate a machine learning model are very important as they influence how 
the performance of ML algorithms is measured and compared (see Mohammed  Sunasra, Performance 
Metrics for Classification problems in Machine Learning(2017), available at https://medium.com/thalus-
ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b.). 
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Sometimes, it is also argued that there should be more transparency in the form of 

providing, for example, the ML source codes and/or the data used in training. As useful 

as this information might be, in many cases, it would not be providing the requisite 

comprehensible information to the physician/nurse and consequently the patient. 

Neither a general warning about the inherent risks of using ML in medicine would fulfil 

the legal requirements of an adequate warning. In the context of pharmaceuticals, 

Geistfeld uses the example of a general warning concerning the inherent risk that a 

prescription drug will cause adverse side effects to the health of patients.356 He points out, 

that providing such general warnings namely, that a particular drug could cause side 

effects, would not be considered adequate in the case where the manufacturer has precise 

information about the likelihood and consequences of the side effect.357 This analogy and 

reasoning could be also applicable for ML devices used in medicine. Therefore, what 

additional information would need to be provided in warnings for certain ML medical 

predictions?   

 

c. Explainable ML and confidence intervals    

 

We have seen above that the aim of warnings is to provide a clear and unambiguous 

information in order to allow the patient to make an informed decision whether to follow 

or not the prediction of a ML algorithm. In cases where a physician acts as a learned 

intermediary the manufacturer should be providing information (warning) to the 

physician in a manner appropriate for her expertise that would allow the physician to 

“translate” this information for the patient and obtain the patient’s informed consent. 

Therefore, the issue that needs to be addressed concerns the type of information 

(warning) that the manufacturer should provide to the physician.  

 

Regarding warnings for prescription drugs, the Court of Appeals of New York held: 

 

                                                       
356 Geistfeld, CALIF. L. REV., 1658 (2017). 
357 Id. 
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“A warning for a prescription drug may be held adequate as a matter of law if it provides 

specific detailed information on the risks of the drug…Always bearing in mind that the 

warning is to be read and understood by physicians, not laypersons, the factors to be 

considered in resolving this question include whether the warning is accurate, clear, 

consistent on its face, and whether it portrays with sufficient intensity the risk involved 

in taking the drug”358 (citations omitted and emphasis added).  

 

Regarding warnings for other products, the US Court of Appeals for the fifth Circuit held:   

   

“A warning must (1) be designed so it can reasonably be expected to catch the attention 

of the consumer; (2) be comprehensible and give a fair indication of the specific risks 

involved with the product; and (3) be of an intensity justified by the magnitude of the 

risk”359 (emphasis added). 

 

Therefore, the warning should be providing information that is accurate, clear, consistent, 

comprehensible, giving fair indication of the specific risks and be of an intensity justified 

by the magnitude of the risk. It is useful in this regard to also bear in mind the distinction 

between failure-to-warn in the negligence context and failure-to-warn in strict liability. 

The Supreme Court of California held that in contrast to negligence law in a failure-to-

warn: 

 

“…Strict liability is not concerned with the standard of due care or the reasonableness of 

a manufacturer's conduct. The rules of strict liability require a plaintiff to prove only that 

the defendant did not adequately warn of a particular risk that was known or knowable 

in light of the generally recognized and prevailing best scientific and medical knowledge 

available at the time of manufacture and distribution.  Thus, in strict liability, as 

opposed to negligence, the reasonableness of the defendant's failure to warn is 

immaterial”360 (emphasis added). 

                                                       
358 Martin v. Hacker 628 N.E. 2d 1308, (N.Y. 1993).  
359 Pavlides v. Galveston Yacht Basin, 727 F. 2d 330, (5th Cir. 1984). 
360 Anderson v. Owens-Corning Fiberglas Corp., 53 Cal. 3d 987, ( Cal. 1991). In this respect, see also Owen 
who argued that “[W]hile acknowledging that ‘strict’ liability in design and warning cases is really nothing 
more than negligence, most courts continue to pretend that it really is something more. Thus, even in the 
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The requirement “known or knowable” creates a number of questions concerning the type 

of obligations imposed on ML manufacturers. To what extent should a manufacturer 

continue researching, testing or developing a ML device in order to reveal its true 

character so that the manufacturer can provide a genuine comprehensible warning to the 

physician (and consequently the patient) that would enable them to make an informed 

decision?361   

 

The majority of States follow the principle expressed in Restatement (Second) of Torts 

§402A comment j on warnings.362 Comment j provides that “the seller is required to give 

warning against [a danger], if he has knowledge, or by the application of reasonable, 

developed human skill and foresight should have knowledge, of the presence of 

the…danger” (emphasis added).363 The Court in Vassalo pointed out that the Restatement 

(Third) of Torts §2(c) reaffirms the principle expressed in Restatement (Second) of Torts 

§402A comment j.364 Restatement (Third) of Torts §2(c) states that a product “is defective 

because of inadequate instructions or warnings when the foreseeable risks of harm posed 

by the product could have been reduced or avoided by the provision of reasonable 

instructions or warnings…and the omission of the instructions or warnings renders the 

product not reasonably safe.” Restatement (Third) of Torts comment m explains both the 

rationale behind this principle as well as the complex nature of foreseeability. Specifically, 

it states that the “issue of foreseeability of risk is more complex in the case of products 

such as prescription drugs, medical devices, and toxic chemicals. Risks attendant to use 

and consumption of these products may, indeed, be unforeseeable at the time of sale. 

                                                       
warning context, most courts still call liability ‘strict’ (DAVID G OWEN, PRODUCTS LIABILITY LAW 109  (2d ed. 
2008).     
361 In this regard see also Geistfeld (MARK A GEISTFELD, PRODUCTS LIABILITY LAW 226-227  (Wolters Kluwer 
ed. 2012).) who argued that “[o]f course manufacturers are subject to negligence liability for failing to 
discover risks that would have been identified by reasonable research program, but is such a duty practically 
enforceable?...Without a credible threat of negligence liability, manufacturers do not have an adequate 
financial incentive for engaging in safety research. That incentive is restored by a rule of strict liability that 
makes manufacturers legally responsible for risks that have been discovered by the time of trial, even if they 
were not reasonably foreseeable at the time of sale.”   
362 See Vassallo v. Baxter Healthcare Corp., 696 N.E.2d 909, (Mass. 1998). 
363 RESTATEMENT (SECOND) OF TORTS (1965). 
364 Vassallo v. Baxter Healthcare Corp., N.E.2d at 922. 
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Unforeseeable risks arising from foreseeable product use or consumption by definition 

cannot specifically be warned against” (emphasis added).  

 

Therefore, the crux of the matter is how do we reveal though warnings distinct risks 

associated with ML medical predictions? Are these distinct ML risks in the medical 

domain foreseeable risks? How far should the manufacturer (seller) proceed in research 

to discover these risks? As Restatement (Third) of Torts comment m provides “a seller 

bears responsibility to perform reasonable testing prior to marketing a product and to 

discover risks and risk-avoidance measures that such testing would reveal.” In this regard, 

Geistfeld also notes, manufacturers under the rule of strict liability are “legally 

responsible for risks that have been discovered by the time of trial, even if they were not 

reasonably foreseeable at the time of sale [or use].”365  

 

This paper considers whether explainable ML (i.e. ML delivering certain types of 

explanations for its specific prediction) and/or delivering a confidence interval (i.e. ML 

indicating its certainty for a specific prediction), in at least certain instances, would be 

revealing distinct risks associated with ML medical predictions. In other words, should in 

certain instances, a ML algorithm be providing explanations and/or a confidence interval 

for its specific prediction in order to provide adequate information (warning) to the 

physician/patient whether or not to follow the prediction of the ML algorithm?366 The 

relationship between explainable ML systems/ML systems providing confidence intervals 

and warnings would be more extensively developed in further research that will 

complement this project. This paper sets below the foundations for the correlation 

between warnings and explainable ML/ML confidence intervals.  

 

As we have seen above, a successful learner should be able to develop specific examples 

to broader generalization.367 We indicated that the term generalization denotes how well 

a machine learning model can apply what it learned during its training to new cases that 

                                                       
365 GEISTFELD, Products Liability Law 227. 2012. 
366 The point on the confidence interval was raised by Rajesh Ranganath (Courant Institute of Mathematical 
Sciences, NYU) in a discussion we had on these challenges.    
367 Shalev-Shwartz & Ben-David, 2 (2014). 



Explainable AI in Medicine, Confidence Intervals and Warnings 

 

  66 

has never seen before. This generalization ability of the machine learning algorithm could 

be measured and an accuracy value could then be provided. This accuracy value, in effect, 

provides a percentage value of the “correct” ML predictions. However, for reasons we have 

seen throughout this paper, solely providing the accuracy value in medicine might be 

sometimes giving a false sense of high performance or would not be always providing the 

“specific detailed information on the risks [involved].”368 In this context, as already 

noted, the physician should be able to explain to the patient the course of treatment to be 

followed in order to obtain her informed consent.  

 

Therefore, it appears that, in at least certain instances, a confidence interval would need 

to be also provided for the specific ML prediction made. The confidence interval of the 

algorithm could be of substantial importance especially for rare and complex cases.  A low 

ML confidence interval for a particular case would be indicating a higher risk if the ML 

prediction is followed. However, in some instances it might be still argued that the 

confidence interval, similar to the accuracy value, will not clearly reveal all the risks 

involved in a ML prediction. The patient might still argue that the accuracy and 

confidence interval values did not provide the patient with the requisite information for 

a true choice judgment.369  This could be particularly the case, for example, in medical 

instances that do not encompass clear binary choices or the different patients have 

different expectations from their treatment. Moreover, the confidence interval, like the 

accuracy value, might be affected by the parameters used in training the ML algorithm 

such as choice of features and labels used. Therefore, the confidence value might be also 

giving in some cases a false sense of high performance.  

 

It is in such cases, that the algorithm might be required to also provide some explanations 

for its specific prediction.370 In other words, an explainable ML algorithm that would be 

                                                       
368 Martin v. Hacker N.E. 2d at 1312.  
369 Davis v. Wyeth Laboratories, Inc., F.2d at 129. 
370 Google in its study entitled “Perspectives on Issues in AI Governance” also appears to support such an 
assertion. Specifically, it states that having an “explanation for why an AI system behaves in a certain way 
van be a big help in boosting people’s confidence and trust in the accuracy and appropriateness of its 
prediction”; moreover it states that “[s]ystems being used to influence decisions of life-changing import, 
such as the choice of medical treatment, warrant much greater effort and depth of explanation than those 
performing tasks of minor consequence, such as making movie recommendations.”      
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able to provide, for example, some explanation as to why it proposes a specific medical 

treatment.371 This type of explanation, similar to the rest of the warnings, would be 

helping to establish how the product is actually performing in that instance when 

providing its prediction. Solely providing a prior warning on how the ML system is 

expected to perform, such as the one provided for conventional (mechanically based) 

medical devices, would not be always providing an adequate warning for ML medical 

systems. This is particularly useful for ML predictions since, as explained above, ML 

systems, in contrast to conventional medical devices, encompass an inductive reasoning 

ability (generalization ability) when making their predictions. This explanation would 

allow the physician to consider the ML prediction and explanations provided, assess the 

risks involved, combine it with her medical judgment and “translate” the information to 

the patient in order to obtain the patient’s informed consent concerning the next steps to 

be followed. Having said that, there is still little agreement on what constitutes 

explainable machine learning and how interpretability should be measured.372 

Interpretability can be defined in different ways and can take many different forms.373 For 

example, Ghassemi et al. argue that models in the medical domain should in certain 

instances provide justifiability; beyond explaining a specific prediction, models should 

strive towards justifying the predictive pathway.374 Other forms of interpretability could 

include the ML algorithm indicating the area on a medical image that the algorithm is 

                                                       
371 As Ghassemi et al. argue “[m]odels cannot be deployed ‘in the wild’ at low cost, and clinical staff must 
justify deviations in treatment to satisfy both clinical and legal requirements” (Ghassemi, et al., 
ARXIV:1806.00388V2, 7 (2018).). 
372 Finale Doshi-Velez & Been Kim, Towards a rigorous science of interpretable machine learning, ARXIV 

PREPRINT ARXIV:1702.08608 (2017). 
373 See among others, John  Pavlus, A New Approach to Understanding How Machines Think, 
QUANTAMAGAZINE 2019.; Sebastian D Goodfellow, et al., Towards understanding ecg rhythm classification 
using convolutional neural networks and attention mappings  (2018).; Ahmad, et al. 2018.; Mitchell, et al., 
ARXIV:1810.03993V2,  (2019).; Zachary C Lipton, The mythos of model interpretability, ARXIV PREPRINT 

ARXIV:1606.03490 (2016).; Derek Doran, et al., What does explainable AI really mean? A new 
conceptualization of perspectives, ARXIV PREPRINT ARXIV:1710.00794 (2017).; Andreas Holzinger, et al., 
What do we need to build explainable AI systems for the medical domain?, ARXIV PREPRINT 

ARXIV:1712.09923 (2017);W James Murdoch, et al., Interpretable machine learning: definitions, methods, 
and applications, ARXIV PREPRINT ARXIV:1901.04592 (2019).; Leilani H Gilpin, et al., Explaining 
explanations: An overview of interpretability of machine learning  (IEEE  2018). 
374 Ghassemi, et al., ARXIV:1806.00388V2, 7 (2018). In this context, they also argue that machine learning 
work in healthcare also provides an opportunity to develop systems that interact and collaborate with 
human experts. They point out that clinical staff provide more than their expertise; empathy is recognized 
as an important element of clinical practice (Rita Charon, Narrative medicine: a model for empathy, 
reflection, profession, and trust, 286 JAMA (2001).; MOIRA STEWART, et al., PATIENT-CENTERED MEDICINE: 

TRANSFORMING THE CLINICAL METHOD   (CRC Press. 2013). 
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looking at in making its prediction; or the algorithm providing more than one option and 

explaining the pros and cons for each option.  When examining ML interpretability, it 

should be also pointed out that some accurate predictive ML models at the current stage 

of research might not be highly interpretable. Therefore, there is also a tradeoff in this 

respect that would need to be considered.  In some cases, a balance might need to be 

struck between system accuracy and system interpretability.375 These issues will be 

further examined in another paper. 

 

Therefore, it appears that in certain cases a type of warning obligation that encompasses 

a form of interpretability and/or confidence interval for the specific prediction made, 

could be providing the physician (and consequently the patient) with the required 

“specific detailed information on the risks [involved].”376 The patient would be able to 

better comprehend the ML prediction by considering the pros and cons of this prediction 

and consequently allowing her to make an informed choice whether or not to follow the 

ML prediction. For example, weighing the pros and cons of a ML recommendation to 

follow an aggressive chemotherapy, it would necessitate, in at least certain cases, some 

form of explanation why the ML is providing such a recommendation. The ML system 

providing some explanations for its prediction could be revealing hidden albeit 

foreseeable risks/benefits. The ordinary consumer (patient) expects from a warning to 

include disclosures that would materially improve her risk-utility decisions.377 Especially, 

in medicine where there are, in many cases, inherent tradeoffs in medical 

recommendations, a warning that encompasses some ML explanations would improve 

her risk-utility decision and consequently allow her to provide informed consent for the 

proposed treatment. Interpretability could make a ML warning in medicine genuinely 

“comprehensible,”378 “accurate and clear.”379 It would be providing the patient with an 

adequate warning particularly in cases when the risk is “death or major disability.”380 

Both physicians and patients, obtaining an appropriate ML explanation and/or 

                                                       
375 See Google, Perspectives on Issues in AI Governance at 9 and 11.   
376 Martin v. Hacker N.E. 2d at 1312.  
377 MARK A GEISTFELD, PRINCIPLES OF PRODUCTS LIABILITY 145  (Thomson Reuters/Foundation Press Second 
ed. 2011). 
378 Pavlides v. Galveston Yacht Basin, F. 2d at 338. 
379 Martin v. Hacker N.E. 2d at 1312.  
380 Davis v. Wyeth Laboratories, Inc., F.2d at 129. 



 
 

  69 

confidence value for each prediction, could enable them to determine whether or not they 

wish to follow the ML prediction or obtain another medical opinion, for example, in cases 

where the physician and the ML algorithm reached conflicting conclusions. In other cases, 

the explanation provided by the ML algorithm might persuade the physician to follow the 

ML’s prediction even if the physician initially came to a different conclusion. Therefore, 

it appears that a warning obligation that encompasses a form of explanation (e.g. in some 

cases even just indicating the part of the medical image been observed by the ML system 

in reaching its prediction) and/or ML confidence interval would provide better 

healthcare, more trust in ML medical systems, better protection to the patients’ interests 

and would better shield the manufacturer from liability. It would better protect the 

manufacturer from the allegation that the warning concerning the ML medical prediction 

was defective. Explainable ML algorithms and ML algorithms providing confidence 

intervals would be providing in certain instances the necessary link between warnings and 

the necessary information needed by the physicians to obtain the patient’s informed 

consent. In this respect, it should be pointed out that the manufacturer could still be liable 

for design defects. This paper focusses on warnings. Designing defects would be subject 

to a risk-utility test.381 Moreover, the patient could have recourse to more claims and/or 

grounds to base her claims. The patient could also bring legal actions against medical 

practitioners. Additionally, litigation could involve claims concerning misleading direct-

to-consumer advertising, concealment or delay in reporting data or provision of 

misleading or fraudulent data to the responsible bodies as well as fraud or 

misrepresentation.382 

 

A final point to be raised in this respect emerges from the judgment of the Supreme 

Judicial Court of Massachusetts in Vassallo summarizing the obligations to warn under 

                                                       
381 Howard Latin, Good Warnings, Bad Productions, and Cognitive Limitations 41 UCLA L. REV. 
1193(1994). as noted by GEISTFELD, Principles of Products Liability 164. 2011. Restatement (Third) §3(b) 
adopts a reasonableness (“risk-utility balancing”) test as the standard for judging the defectiveness of 
product designs. As Restatement (Third) comment d further explains the “test is whether a reasonable 
alternative design would, at reasonable costs, have reduced the foreseeable risks of harm posed by the 
product and, if so, whether the omission of the alternative design by the seller or a predecessor in the 
distributive chain rendered the product not reasonably safe. (This is the primary, but not exclusive, test for 
design defective design. See Comment b.).” 
382 See Tamsen Valoir & Shubha Ghosh, FDA preemption of drug and device labeling: Who should decide 
what goes on a drug label, 21 HEALTH MATRIX (2011). 
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Restatement (Third) of Torts (§2(c) and comment m). The Supreme Judicial Court of 

Massachusetts held that “the defendant will not be held liable…for failure to warn…about 

risks that were not reasonably foreseeable at the time of sale or could not have been 

discovered by way of reasonable testing prior to marketing the product.”383 It is argued in 

this paper that there are risks in ML predictions in medicine that could be hidden but 

“reasonably foreseeable” and could be revealed if the algorithm provides some 

explanations and/or a confidence interval for its specific prediction. 

 

d. How detailed should a ML explanation be?   

 

As we explained above, a warning obligation provides the physician (and consequently 

the patient) with “specific detailed information on the risks [involved].”384 The warning 

should be genuinely “comprehensible,”385 “accurate and clear”386 particularly in cases 

when the risk is “death or major disability.”387 As noted above, adequate warnings for ML 

medical applications could consist of a framework that provides, when needed, ML 

explanations for the ML predictions.   However, we also saw that there is still little 

agreement on what constitutes explainable machine learning and what form 

interpretability should take in order to constitute an adequate warning.   

 

Regarding warnings for conventional products, Geistfeld notes that an adequate product 

warning is “a warning which best promotes consumer welfare – is one that enables the 

ordinary consumer to make the best estimate of the product’s net benefit by conveying 

information about product risk that is not possessed by the consumer but reasonably 

available to the product seller.”388 Therefore, how do we convey through interpretability 

the necessary information about a “product risk” that would enable the consumer to make 

the best estimate of the product’s “net benefit”? In Liriano the US Court of Appeals, 

Second Circuit, referring to the obviousness of a risk, held that a “warning can convey at 

                                                       
383 Vassallo v. Baxter Healthcare Corp., N.E.2d.  
384 Martin v. Hacker N.E. 2d at 1312.  
385 Pavlides v. Galveston Yacht Basin, F. 2d at 338. 
386 Martin v. Hacker N.E. 2d at 1312.  
387 Davis v. Wyeth Laboratories, Inc., F.2d at 129. 
388 GEISTFELD, Products Liability Law 251. 2012. 
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least two types of message. One states that a particular place, object or activity is 

dangerous. Another explains that people need not risk the danger posed by such a place, 

object, or activity in order to achieve the purpose for which they might have taken that 

risk. Thus, a highway sign that says “Danger – Steep Grade” says less than a sign that says 

“Steep Grade – Follow Suggested Detour to Avoid Dangerous Areas.”389 As Geistfeld 

explains, “a fully informed safety decision…requires knowledge of both the risk (the term 

PL in the risk utility test) and the reasonable precautions for avoiding it (described by the 

term B)”390 In the context of ML in medicine, this could translate to, for example, having 

interpretable ML medical devices that provide more than one prediction and for each 

prediction providing different explanations in order to offer a choice. Another option, the 

ML device could be providing one prediction with explanations that allow the 

physician/patient to make the best estimate of the product’s “net benefit.”  

 

As noted above, Restatement (Third) § 2 cmt i provides that ‘warning must be provided 

for inherent risks” as such warnings would allow the physician/patient to avoid the “risk 

warned against by making an informed decision” not to purchase or use the product (in 

the context of ML medical device not to follow the prediction). It was argued above that 

the “inherent risks” in certain ML medical systems could be truly revealed through the 

provision of some explanations on the reasons that the ML is providing that prediction 

(e.g. the part of the medical image been observed).  

 

Coming back to the issue of foreseeability, it may be wondered what types of risks are 

foreseeable and what should be precisely revealed through ML interpretability and/or 

confidence value. The Court of Appeals of Maryland in Moran provides some guidance in 

this respect. It held that “whether foreseeability is being considered from the standpoint 

of negligence or proximate cause, the pertinent inquiry is not whether the actual harm 

was of a particular kind which was expectable. Rather, the question is whether the actual 

harm fell within the general field of danger which have been anticipated.”391 Therefore, 

                                                       
389 Liriano v. Hobart Corp., 170 F.3d 264, (2d Cir. 1999). 
390 GEISTFELD, Products Liability Law 265. 2012. The risk/utility test refers to a risk/benefit test. This 
formula encompassing the B and PL parameters will be further explained below.   
391 Moran v. Faberge Inc., 273 Md. 538, (Md. 1974). 
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foreseeability refers to the general risks that can be contemplated and not necessarily the 

particular risk. Consequently, in the context of ML, a general risk that can be 

contemplated, for example, in relation diagnosis by ML based on deep learning 

architectures, would be treated as a foreseeable risk. However, it should be pointed out 

that providing an overly general warning, indicating for example, that a particular drug 

(or a medical device) could cause side effects (or an injury in general) would not be 

considered adequate.392 Therefore, the “general field of danger” is the requirement to 

determine foreseeability but a general vague warning concerning abstract dangers would 

not fulfil the requirements of an adequate warning. The Court of Appeals of Maryland 

referred to the “inherent and hidden danger[s]” that need to be warned of.393 As argued 

“inherent and hidden danger[s]” in ML predictions could at least in certain instances be 

revealed through interpretable ML devices and/or ML devices that provide a confidence 

interval for their predictions.  

 

Considering the above analysis, an issue that still remains concerns the level of detail that 

is required in the warning. In the context of ML interpretability, the issue concerns the 

level of detail required in the explanation given by a ML algorithm. An adequate ML 

explanation could be also providing an adequate warning on the risks/benefits involved 

in following the ML medical recommendation. In this regard, the US District Court, 

Northern District of Georgia held in Jones that “where a duty to warn arises, the duty may 

be breached by (1) failing to adequately communicate the warning to the ultimate user or 

                                                       
392 Geistfeld, CALIF. L. REV., 1658 (2017). 
393 “[B]ased on this negligence law we think that in the products liability domain a duty to warn is imposed 
on a manufacturer if the item it produces has an inherent and hidden danger about which the producer 
knows, or should know, could be a substantial factor in bringing injury to an individual…” (Moran v. 
Faberge Inc., Md. at 552.). 



 
 

  73 

(2) failing to provide an adequate warning of the product’s potential risk.”394 Therefore, 

the adequacy of the warning rests on both the content and the format of the disclosure.395  

 

We have already seen above some of the elements concerning the content of an adequate 

warning. To recapitulate, a warning should encompass “specific detailed information on 

the risks [involved],”396 should be “comprehensible,”397 “accurate and clear,”398 especially 

when exercising a “true choice” judgment involving “death or major disability.”399 

Regarding the content of warnings, Geistfeld also notes that an “overly general warning 

can be inadequate as illustrated by an extreme example: WARNING – Product can cause 

injury. More detail is required, but how much?”400  

 

Restatement (Third) of Torts comment i provides some help. It states that “[s]ubsection 

(c) [governing liability for defective warnings] adopts a reasonableness test for judging 

the adequacy of product instructions and warning. It thus parallels Subsection (b), which 

adopts a similar standard for judging the safety of product designs.” Comment i also 

acknowledges that although the liability standard is formulated in very much identical 

terms for determining defects in design and in warnings, the defectiveness test is more 

difficult to apply in the warning context. It is therefore evident that the test for 

determining the adequacy of warning defects is based on the same type of risk-utility 

grounds as the ones applied for design defects and this is followed in most jurisdictions.401 

But the challenge in this respect concerns the factors that need to be considered in a risk-

utility test and the way to strike the risk-utility balances. Restatement (Third) of Torts 

                                                       
394 Jones v. Amazing Prods., 231 F. Supp. 2d 1228, (N.D. Ga.). Regarding the duty to warn it was held in this 
case that “[i]n products liability case, whether or not grounded in strict liability or negligence theory, a 
manufacturer’s duty to warn depends on the foreseeability of the use in question, the type of danger 
involved and the foreseeability of the user’s knowledge of the danger” (at 1247). See also Simonetta in which 
case it was held that ““[f]oreseeability does not create a duty but sets limits once a duty is established”…Once 
this initial determination of legal duty is made, the jury’s function is to decide the foreseeable range of 
danger therefore limiting the scope of that duty.” (Simonetta v Viad Corp., 165 Wn.2d 341, (Wash. 2008). 
See also Geistfeld who explains why the tort duty is justified by the frustration of the ordinary consumer’s 
actual expectations of products safety (GEISTFELD, Products Liability Law 104-117. 2012.)  
395 GEISTFELD, Products Liability Law 273. 2012. 
396 Martin v. Hacker N.E. 2d at 1312.  
397 Pavlides v. Galveston Yacht Basin, F. 2d at 338. 
398 Martin v. Hacker N.E. 2d at 1312.  
399 Davis v. Wyeth Laboratories, Inc., F.2d at 129. 
400 GEISTFELD, Products Liability Law 277. 2012. 
401 Id. at, 283. 
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comment i acknowledges this challenge but also provides some assistant to this quest. It 

provides that: 

 

“[i]t is impossible to identify anything approaching a perfect level of detail that should be 

communicated in product disclosures. For example, educated or experienced product 

users and consumers may benefit from inclusion of more information about the full 

spectrum of product risks, whereas less-educated or unskilled users may benefit from 

more concise warnings and instructions stressing only the most crucial risks and safe-

handling practices…In some cases, excessive detail may detract from the ability of typical 

users and consumers to focus in the important aspects of the warnings, whereas in others 

reasonably full disclosure will be necessary to enable informed, efficient choices by 

product users…No easy guideline exists for courts to adopt in assessing the adequacy of 

product warnings and instructions. In making their assessments, courts must focus on 

various factors, such as comprehensibility, intensity of expression, and the characteristics 

of expected user groups.”  

 

It therefore appears that more information is not necessarily always better. In this respect 

the US Court of Appeals, fourth Circuit in Hood held that “…the price of more detailed 

warnings is greater than their additional printing fees alone. Some commentators have 

observed that the proliferation of label detail threatens to undermine the effectiveness of 

warnings altogether.” 402 In the context of ML interpretability, this means that a balance 

would need to be struck between on the one hand a more detail ML explanation and on 

the other ensuring the effectiveness of this explanation (warning). This balance would 

depend on a number of factors that include, the medical context in which the ML medical 

device is used; the seriousness of the possible injury or possibility of death; the urgency 

in taking a medical decision for example if the decision is taken in an ICU or an Accident 

and Emergency department (A&E); whether there is a clear medical target to be achieved; 

and the confusion that might be created by providing excessive complex explanations and 

the loss of valuable time in assessing the ML explanations provided for each prediction. 

As noted above, the different forms of ML interpretability and what would constitute 

                                                       
402 Hood v. Ryobi Am. Corp., 181 F.3d 608, (4th Cir.).     
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adequate level of ML interpretability in different medical contexts is the subject of further 

research that will complement this paper.           

 

e. Physicians acting as learned intermediaries   

 

An issue that was already touched upon above concerns the impact of physicians, acting 

as intermediaries, on warnings. There are two issues arising in this regard. First, whether 

warnings directed to patients will be an effective means of communication or whether 

suppliers of ML devices should also provide warnings to physicians (intermediaries) who 

will be in the best place to pass this information to the patient.403 Secondly, whether the 

supplier escapes liability if she solely gives all the information necessary to the person 

through who the product is supplied (e.g. the physician).  

 

Regarding the first issue, Restatement (Third) §6(d) provides that a “prescription drug or 

medical device is not reasonably safe due to inadequate instructions or warnings if 

reasonable instructions or warnings regarding foreseeable risks of harm are not given 

to:…(1) prescribing and other health-care providers who are in a position to reduce the 

risks of harm in accordance with instructions or warnings…” Therefore, applying this 

reasoning to ML medical devices, warnings might need to be given to the physician. The 

question explored in this paper is the form that this warning should take. 

 

Regarding the second issue, in the context of prescription drugs and conventional medical 

devices, a manufacturer of a drug or medical device, based on the learned intermediary 

doctrine, fulfills its obligations to warn by disclosing the appropriate (adequate) 

information to the prescribing physician who in turn transfers this information to the 

patient when prescribing the drug or medical device.404 However, the question remains, 

                                                       
403 This point regarding the role of intermediaries in general, which can be also applicable to the ML medical 
context, was raised by GEISTFELD, Products Liability Law 241. 2012. 
404 Id. at, 250. See also Supreme Court of California holding that “[t]he manufacturer cannot be held liable 
if it has provided appropriate warnings and the doctor fails in his duty to transmit these warnings to the 
patient or if the patient relies on inaccurate information from others regarding side effects of the drug” 
(Brown v. Superior Court 751 P.2d 470, (Cal. 1988).). However, changes in the delivery of health care that 
resulted from direct marketing and managed care could have impacts on the “learned intermediary” 
doctrine hence a warning might be necessary for both the prescribing physician and the patient (see 
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what should constitute adequate information? Manufacturers of ML medical devices 

might be alleging that the physician, as a learned intermediary, should have known of 

certain risks associated with ML medical applications. In the non-medical context, the 

sophisticated user defense, which in the medical context is the learned intermediary rule, 

is treated as an exception to the manufacturer’s general duty to warn consumers, and 

therefore, if successfully argued, it will constitute an affirmative defense that negates the 

manufacturer’s duty to warn.405 Under the sophisticated user defense (the learned 

intermediary rule in medicine), sophisticated users need not be warned about dangers of 

which they are “already aware or should be aware.”406  In other words, as the Court 

explains, if the manufacturer reasonably believes that the “user [the physician in the 

medical context] will know or should know” about a given “product’s risk” the 

manufacturer need not warn that user of that risk.407 The “should know” standard might 

be raising concerns. Different physicians might have different knowledge of the risks 

involved in, for example, ML diagnosis. This variability of knowledge is also relevant when 

discussing the “obvious danger rule” recognized by Californian law.408 In the context of 

the “obvious danger rule,” Geistfeld explains that an objective test is applied and the 

courts do not investigate the user’s subjective knowledge.409 Therefore, applying an 

objective test also to the learned intermediary rule would lead to the conclusion that the 

physician should not be treated as a particularly knowledgeable of ML medical devices 

who needs no or even minimal warnings.  

 

Furthermore, Restatement (Second) of Torts section 388 cmt. k states that: 

 

                                                       
Centocor, Inc. v. Hamilton, 310 S.W.3d 476, (Tex. App. Ct. 2010). The same reasoning could be also 
applicable for ML medical devices especially those that would be also used directly by the consumer outside 
the clinic and not in the physician’s presence.    
405 Johnson v. American Standard, Inc., 43 Cal.4th 56, (Cal. 2008). 
406 Id. The Court explained that sophisticated user defense evolved out of the Restatement (Second) of Torts 
section 388 and the obvious danger rule, an accepted principle and defense in California (Stevens v. Parke, 
Davis & Co., 9 Cal.3d 51, (Cal. 1973).  
407 Johnson v. American Standard, Inc., Cal.4th at 66.; this was the interpretation given by courts to 
Restatement (Second) of Torts section 388, subdivision (b); see also Martinez v. Dixie Carriers, Inc., 529 
F.2d 457, (5th Cir. 1976). 
408 The obvious danger rule provides that there is no need to warn of known risks under either negligence 
or strict liability; see Johnson v. American Standard, Inc., Cal.4th at 67.  
409 GEISTFELD, Products Liability Law 233. 2012. 
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“a condition, although readily observable, may be one which only persons of special 

experience would realize to be dangerous. In such case, if the supplier, having such special 

experience, knows that the condition involves danger and has no reason to believe that 

those who use it will have such special experience as will enable them to perceive the 

danger, he is required to inform them of the risk of which himself knows and which he 

has no reason to suppose that they will realize.”  

 

In the context of ML medical devices, comment k would mean that ML manufacturers, 

could be “persons of special experience,” and hence they could be aware of risks inherent 

in ML algorithms that are not obvious or even comprehensible to physicians (and 

patients). Moreover, there may be hidden risks that are not even apparent to the ML 

engineers but which could be revealed if the ML algorithm is interpretable. Considering 

that ML in medicine is at its inception and not well understood by physicians, it would be 

hard to invoke the learned intermediary rule (or obvious danger rule)410 if no adequate 

warning is provided. This is another reason why identifying what constitutes an adequate 

warning for ML applications in medicine is of paramount importance.411 Once an 

adequate warning is developed for ML, then like with prescription drugs and conventional 

medical devices, a manufacturer of a ML medical device would fulfil its obligations to 

warn by disclosing the information to the physician who in turn transfers this information 

to the patient to obtain her informed consent. As argued above, a warning for ML medical 

devices, in at least certain cases, might need to take the form of ML explanations and/or 

the provision of a confidence interval. Consequently, it appears that, additionally to what 

was discussed above, providing the physician with an explainable ML device that gives 

the necessary explanations for the proposed ML prediction and/or the ML algorithm 

providing a confidence interval for its specific perdition would in the great majority of 

cases fulfil the manufacturers’ obligations regarding warnings. 

 

                                                       
410 Accepted principle in defense in California; See Stevens v. Parke, Davis & Co., Cal.3d. and Johnson v. 
American Standard, Inc., Cal.4th at 65.  
411 See for example, how ML systems could be fooled by surgical skin scars in providing skin melanoma 
diagnosis at Julia  Winkler, et al., Association Between Surgical Skin Markings in Dermoscopic Images 
and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma 
Recognition JAMA Dermatology at https://jamanetwork.com/journals/jamadermatology/article-
abstract/2740808.    
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f. Post-sale duty to warn  

 

Another interesting issue that could possibly arise with the deployment of ML devices in 

medicine concerns the post-sale duty to warn. Restatement (Third) of Torts §10(b) states 

that a “reasonable person in the seller’s position would provide a warning after the time 

of sale if:… (1) the seller knows or reasonably should know that the product poses a 

substantial risk of harm to persons or property; and (2) those to whom a warning might 

be provided can be identified and can reasonably be assumed to be unaware of the risk of 

harm; and (3) a warnings can be effectively communicated to and acted on by those to 

whom a waring might be provided; and (4) the risk of harm is sufficiently great to justify 

the burden of proving a warning” (emphasis added). Concerning the first condition that 

the “seller knows or reasonably should know” raises the question concerning the extent 

to which the seller of ML medical devices should be constantly monitoring the product. 

In the case where the seller “may have known or should have known” of the risk at the 

time of sale then the failure to warn would be a waring defect under §2(c).412 However, 

knowledge of a risk may arise after the time of sale and this may give a rise to warn at that 

time. Regarding conventional products Restatement (Third) of Torts §10 comment c 

provides that the “burden of constantly monitoring product performance in the field is 

usually too burdensome to support a post-sale duty to warn.” However, comment c adds 

that when reasonable grounds exist for the seller to suspect that a hitherto unknown risk 

exists the duty of reasonable care may require investigation. In the context prescription 

drugs and devices, that can be also applicable to ML medical devices, comment c points 

out that courts traditionally impose a “continuing duty of reasonable care to test and 

monitor” after sale to discover product related risks. Therefore, in the context of ML 

medical devices this could include the obligation, for example, to re-test the 

generalization ability of the algorithm if new data become available. Interpretable ML 

algorithms could also ensure that part of the obligation concerning post-sale duty to warn 

is satisfied. It would be satisfied, as the ML device would be continuously providing post-

sale explanations (post-sale warnings) for its predictions and this might also reveal risks 

that were not understood (unforeseeable) at the time of sale but become apparent post-

                                                       
412 See Restatement (Third) of Torts §10 comment c. 
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sale. This could therefore also satisfy to some extent the obligation of “continuing duty of 

reasonable care to test and monitor.”  As far as, conditions (2) and (3) of §10(b) are 

concerned, do not seem either to pose much of a problem for ML medical devices. Users 

of ML medical devices would be relatively easily identifiable and warned accordingly.  

 

g. The correlation between warnings and defective design  

 

Identifying an adequate warning for ML medical devices would also in certain cases be 

relevant when examining ML design defects and malfunctioning. The correlation between 

warnings and ML malfunctioning is dealt with in the section that follows. This section 

deals with the correlation between warnings and defective designs that could be also of 

particular interest to ML medical devices.  

 

Under comment k “unavoidably unsafe products” are exempted from strict liability.413 

Comment k states that that the seller of “unavoidably unsafe products” that are “properly 

prepared and marketed and proper warning is given” is “not to be held to strict liability 

for unfortunate consequences…merely because he has undertaken to supply the public 

with an apparently useful and desirable product, attended with a known but apparently 

reasonable risk.” Comment k has been adopted in the vast majority of jurisdictions.414  

Drugs and vaccines are expressly referred to in comment k as examples of “unavoidably 

unsafe products” and they could hence enjoy the protection provided by this exception. 

The policy considerations behind comment k for prescription drugs is explained by the 

Supreme Court of California in Brown.415 The Supreme Court starts its explanation by 

going back to the time when  Restatement (Second) §402A was contemplated.416 As it 

points out, “[d]uring a rather confusing discussion of a draft of what was to become 

section 402A, a member of the institute proposed that drugs should be exempted from 

strict liability on the ground that it would be ‘against the public interest’ to apply the 

doctrine to such products because of the ‘very serious tendency to stifle medical research 

                                                       
413 There is no provision similar to comment k in Restatement (Third); instead, it encompasses a special 
rule governing defective design of medical products (GEISTFELD, Principles of Products Liability 171. 2011.       
414 Brown v. Superior Court P.2d at 476. 
415 Id. 
416 See 38 A.L.I. Proc. 19, 90-92, 98 (1961). 
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and testing.’”417 It also explained that “there is an important distinction between 

prescription drugs and other products such as construction machinery…the products of 

which were held strictly liable. In the later cases, the product is used to make work easier 

or to provide pleasure, while in the former it may be necessary to alleviate pain and 

suffering or to sustain life.”418 Finally, it explained that “[i]f drug manufacturers were 

subject to strict liability, they might be reluctant to undertake research programs to 

develop some pharmaceuticals that would prove beneficial or to distribute others that are 

available to be marketed, because of the fear of large adverse monetary judgments.”419 It 

appears that the policy considerations applicable for exempting drugs from strict liability 

would be also applicable to  ML medical devices. ML medical devices, like drugs and 

vaccines, supply the public with an apparently useful and desirable product that promotes 

health and safety.420 In particular, ML research in medicine already appears promising in 

providing unprecedent benefits to healthcare. ML in medicine could revolutionize 

healthcare hence why circumspection is needed in designing a legal framework for ML 

medical systems.421 Similar to drug and vaccine manufacturers, a legal liability framework 

that subjects manufacturers of ML medical devices to excessive adverse litigation could 

undermine or even destroy this ML promising revolution in healthcare. There could be 

such substantial detrimental effects on the ML industry, as a ML medical algorithm might 

be used simultaneously on thousands or millions of patients. Consequently, class-action 

lawsuits in cases of injuries could easily drive ML industry into destruction.422 At the same 

time, the potential impact of a ML medical algorithm on possibly thousands or millions 

of patients also calls for circumspection in deploying ML algorithms in medicine. Such 

deployment should be subject to a legal framework that also ensures the health and safety 

of patients.   

 

                                                       
417 Brown v. Superior Court P.2d at 475. 
418 Id. at, 478. 
419 Id. at, 479. 
420 Mutatis mutandis see also Geistfeld, CALIF. L. REV., 1670 (2017). 
421 As Geistfeld mentioned about drug manufactures, if they were subject to strict liability, they might be 
reluctant to undertake research in developing certain types of pharmaceuticals or distribute others that are 
ready to be used, because of the fear of large monetary judgments (GEISTFELD, Products Liability Law 321. 
2012.). 
422 See discussion in relation to contaminated blood by Geistfeld, CALIF. L. REV., 1670-1671 (2017). 



 
 

  81 

Therefore, if there are also strong policy reasons to apply comment k on ML medical 

devices, how would it affect allegations concerning design defects of ML medical devices? 

The Supreme Court of Nebraska in Freeman provides a clear explanation of how 

comment k classically applies in design defect cases. It holds that “[t]he majority of 

jurisdictions that have adopted comment k apply it on a case-by-case basis…Although a 

variety of tests are employed among jurisdictions that apply comment k on a case-by-case 

basis, the majority apply the comment as an affirmative defense, with the trend toward 

the use of a risk-utility test in order to determine whether the defense applies…When a 

risk utility test is applied, the existence of a reasonable alternative design is generally the 

central factor…Because the application of comment k is traditionally viewed as an 

exception and a defense to strict liability, courts generally place the initial burden of 

proving the various risk utility factors on the defendant…Thus, under these cases, the 

plaintiff's burden of proof for his or her prima facie case remains the same as it is in any 

products liability case in the given jurisdiction.”  

 

The Restatement (Third) takes a different approach from Restatement (Second) on this 

matter. Restatement (Third) §6(c) provides that a ‘prescription drug or medical device is 

not reasonably safe due to defective design if the foreseeable risks of harm posed by the 

drug or medical device are sufficiently great in relation to foreseeable therapeutic benefits 

that reasonable health-care providers, knowing of such foreseeable risks and therapeutic 

benefits, would not prescribe the drug or medical device for any class of patients” 

(emphasis added). The liability rule in §6(c) has been heavily criticized.423 Geistfeld 

provides an interesting analysis in response to this criticism that is also useful for 

addressing some of the legal issues arising out of the deployment ML algorithms in the 

                                                       
423 See James A. Henderson Jr. & Aaron D. Twerski, Drug Designs Are Different 111 YALE L.J. 151(2001). 
as noted by GEISTFELD, Principles of Products Liability 173. 2011. See also Supreme Court of Nebraska in 
Freeman holding that “There are several criticisms of § 6(c), which will be briefly summarized. First, it does 
not accurately restate the law. It has been repeatedly stated that there is no support in the case law for the 
application of a reasonable physician standard in which strict liability for a design defect will apply only 
when a product is not useful for any class of persons…Fourth, the test allows a consumer's claim to be 
defeated simply by a statement from the defense's expert witness that the drug at issue had some benefit 
for any single class of people. Thus, it is argued that application of § 6(c) will likely shield pharmaceutical 
companies from a wide variety of suits…” (emphasis added) (Freeman v. Hoffman-La Roche, Inc., 618 
N.W.2d 827, (Neb. 2000).).    
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medical domain.424 However, before proceeding with Geistfeld’s analysis on §6(c), it is 

useful to explain the correlation between warnings and product design as it will assist in 

the understanding of the analysis on §6(c). 

 

Regarding the correlation between warnings and product design, the challenge concerns 

the situations where a warning can substitute for a design change.425 In other words, as 

Geistfeld asks, could a warning that states: “WARNING: No airbags in car!” eliminate the 

need to incorporate airbags into the design of a vehicle as required by the risk-utility 

test?426 Similar questions, and even more complex ones, could also arise in the context of 

ML medical devices. The challenges with regard to ML would be greater as there could be 

little understanding of the implications of providing information on the technical 

characteristics of ML algorithms. For example, providing information on type of data that 

were used, the ML architecture, or the type of features that were used might not clearly 

indicate the impact, if any, on design defects. Considering Geistfeld’s example on the lack 

of an airbag warning, Restatement (Third) §3 comment d (under sub-title illustrations) 

states that the “fact that danger is open and obvious does not bar the design claim.” In 

other words, an “open and obvious” danger does not necessarily shield the defendant 

from liability based on defective design.427 Extending this reasoning concerning “open 

and obvious” dangers, it might be logically concluded that a product warning (such as “No 

airbags”) does not either shield the manufacturer from liability concerning a design 

defect. Designing defects would still need to be subject to the risk-utility test.428 This 

conclusion seems logical but at first sight it might be challenged by Restatement (Second) 

of Torts comment j.  

 

                                                       
424 GEISTFELD, Principles of Products Liability 174-180. 2011. 
425 Id. at, 164. 
426 Id. 
427 This is accepted in the “strong majority” of jurisdictions (see more detail by Geistfeld id.). 
428 Latin, UCLA L. REV.,  (1994). as noted by GEISTFELD, Principles of Products Liability 164. 2011. 
Restatement (Third) §3(b) adopts a reasonableness (“risk-utility balancing”) test as the standard for judging 
the defectiveness of product designs. As Restatement (Third) comment d further explains the “test is 
whether a reasonable alternative design would, at reasonable costs, have reduced the foreseeable risks of 
harm posed by the product and, if so, whether the omission of the alternative design by the seller or a 
predecessor in the distributive chain rendered the product not reasonably safe. (This is the primary, but not 
exclusive, test for design defective design. See Comment b.).” 
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Comment j provides that “[w]here a warning is given, the seller may reasonably assume 

that it will be read and heeded; and a product bearing such a warning, which is safe for 

use if it is followed, is not in defective condition, nor is it unreasonably dangerous” 

(emphasis added). Does comment j allow the manufacturer to solely provide a warning 

instead of a redesigning the product? Geistfeld explains that comment j is a source of duty 

to warn under section 402A.429 Consequently, comment j creates the duty to warn within 

the strict products liability framework. In other words, the provisions on warnings in 

comment j do not foreclose allegations of a defective design.430 This approach was 

followed by the majority of courts hence also reflected in Restatement (Third) §2 

comment l providing that “[w]arnings are not…a substitute for the provision of a 

reasonably safe design.”  

 

Having provided the above analysis, let us apply it on hypothetical example concerning a 

warning on the predictions of a ML medical device. Let us assume, that these warnings 

provide technical details on the data used, labels used and targets set during the training 

of the algorithm. Let us also assume that the manufacturer correctly argues that this 

information indicates risks that could result from ML medical predictions. However, 

suppose, the physician/patient (plaintiff) alleges that it is difficult to follow such a 

warning. They claim that in order to follow such a warning they would need to consult 

expert ML engineers and together with other physicians study the risks for each medical 

prediction that ML makes. As a result, they argue that instead of such a difficult to follow 

warning, the manufacturer could have eliminated the risks by a reasonable alternative 

design. In this context, Geistfeld notes, generally, when there is difficulty in following a 

warning, the cost of redesign (denoted as “Bredesign”) could be less than the consumers’ cost 

of complying with the warning (denoted as “Bcomplying with warning”). Therefore, Bredesign < 

Bcomplying with warning.431 Under these circumstances, he notes that, the “risk-utility 

characteristics of the warning do not prevent the design from being defective” (i.e. Bredesign 

                                                       
429 GEISTFELD, Principles of Products Liability 165. 2011. Comment j provides “[i]n order to prevent the 
product from being unreasonably dangerous, the seller may be required to give directions or warning, on 
the container as to its use.”   
430 The different forms of liability are also evident from Restatement (Second) §402A cmt. a stating that 
“[t]he rule stated here is not exclusive and does not preclude liability based upon alternative ground of 
negligence of the seller, where such negligence can be proved.”   
431 GEISTFELD, Principles of Products Liability 167. 2011. 
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< Bcomplying with warning < PL) (P refers to the probability of a risk materializing and L refers 

to the cost of injury or loss). So, for our ML hypothetical example, it would mean that the 

ML manufacturer might need in certain cases to come up with another design that 

imposes an easier warning to be followed. In other words, the ML medical device is safe 

for use when the user reads and heeds the product warning but it is still defectively 

designed.432 It is at this point where a warning in the form of a ML explanation and/or 

confidence interval for its specific prediction might provide a shield to such an allegation. 

An explainable ML, that provides warnings in the form of explanations that are easy to 

follow, could be also shielding the manufacturer from allegations that the ML medical 

device has been defectively designed. In other words, an interpretable ML might prevent 

allegations that the manufacturer could have eliminated the risks by adopting a 

reasonable alternative design. Therefore, explainable ML medical devices might be 

fulfilling the requirements of both Restatement (Second) of Torts comment j and the risk-

utility test in Restatement (Third). In contrast, a conventional warning (i.e. not 

encompassing interpretability) might leave a door open for the allegation that the ML 

system has been defectively designed.      

 

Coming back to Restatement (Third) §6(c) that we started considering above, to 

recapitulate, it refers to prescription drugs and medical devices and states that they are 

“not reasonably safe due to defective design…if reasonable health-care providers, 

knowing of such foreseeable risks and therapeutic benefits, would not prescribe the drug 

or medical device for any class of patients” (emphasis added). As we noted, this rule has 

been heavily criticized. Geistfeld’s analysis contains useful elements which could be also 

applied to the deployment of ML medical systems. Geistfeld first explains, that a physician 

who prescribes treatment that is not in the patient’s best interest is subject to malpractice 

liability.433 Additionally, failing to obtain the patients informed consent is another source 

of malpractice liability. Therefore, in the medical context, it is the physician that makes 

the initial risk-utility decision for prescription drugs and medical devices and is then 

obliged to provide explanations to the patient for that decision in order to obtain the 

                                                       
432 See in the general context, the reasoning behind this point by Geistfeld at id.   
433 Id. at, 174. 
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informed consent of the patient.434 This also the reason why under the learned 

intermediary rule, the manufacturers of prescription drugs and medical devices satisfy 

their duty to warn if they provide adequate warnings to the physicians.435 Restatement 

(Third) §6(c) provides in effect a risk-utility test to determine whether a prescription drug 

or medical device is defective.436 It refers to the “foreseeable risks of harm posed by the 

drug or medical device” in relation to “foreseeable “therapeutic benefits.” It is therefore a 

risk-utility test albeit, as Geistfeld notes, a “risk-utility test that is modified to account for 

the manner in which the physician-patient relationship affects the nature of the product 

transaction.”437 However, Restatement (Third) §6(c) is still criticized. The criticism 

concerns the claim that a drug would not be considered as defectively designed under 

Restatement (Third) if it is beneficial for even a small class of users.438 In this regard, 

Geistfeld argues that closer analysis shows otherwise.439 He notes that, if it is 

unreasonably dangerous to prescribe a drug to a class of users then the manufacturer 

should warn physicians accordingly. He points out that the fact that a drug should not be 

prescribed to a class of users does not justify a finding that the drug is defectively 

designed. However, if the manufacturer does not provide such warnings then she would 

be subject to liability for the injuries caused by the inadequate warning.440 In other words, 

Restatement (Third) §6(c) does not treat the above drug as defectively designed but could 

consider it as providing inadequate warning. However, such a drug can still be found as 

defectively designed under Restatement (Third).441 Therefore, the majority rule 

determines the alleged defectiveness of prescription drugs and medical devices on a case-

by-case basis. Whereas, Restatement (Third) looks at the relevant class of patient to 

evaluate the design. Under both approaches, Geistfeld argues that it would be hard to find 

                                                       
434 Id. 
435 Id. 
436 Id. at, 175. 
437 Id. 
438 Restatement (Third) §6(c) states that “reasonable health-care providers, knowing of such foreseeable 
risks and therapeutic benefits, would not prescribe the drug or medical device for any class of patients” 
(emphasis added).   
439 GEISTFELD, Principles of Products Liability 177-178. 2011. 
440 Id. at, 178. 
441 Id.In this regard see, Restatement (Third) §2(b) provides that a product “is defective in design when the 
foreseeable risks of harm posed by the product could have been reduced or avoided by the adoption of a 
reasonable alternative design by the seller or other distributor, or a predecessor in the commercial chain of 
distribution, and the omission of the alternative design renders the product not reasonably safe.”     
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liability for defective design, as a drug or medical device would be beneficial to at least 

one class of patients.442 However, as he also points out “to make a proper prescription, 

the physician must have received the requisite risk-utility information from the 

manufacturer. ‘With drugs therefore, the liability game is with the warning candle, not 

with design.’443”444     

 

It is clear from the above, that under either approach, majority or Restatement (Third), 

warnings do play a crucial role in liability challenges concerning drugs and medical 

devices. Similar type of challenges would also surface regarding ML medical systems. In 

the same way it could be argued that ML medical devices would still be beneficial to at 

least one class of patients. As a result, under both the majority approach and Restatement 

(Third) such ML limitations would not justify a finding that the ML medical device is 

defectively designed. Therefore, the question will amount to whether an adequate 

warning was provided in this regard. As argued in this paper, identifying warnings fit for 

ML algorithms is a challenging task. For example, providing the physicians with 

warnings/information encompassing technical details concerning the algorithm or its 

training might not be of much use to the physician. Consequently, the physician would 

not be enabled to make the required initial risk-utility decision and provide the 

appropriate explanations to the patient for that decision in order to obtain the informed 

consent of the patient. As we saw in the analysis of Geistfeld above, Restatement (Third) 

§6(c) provides in effect a risk-utility test to determine whether a prescription drug or 

medical device is defective. It refers to the “foreseeable risks of harm posed by the drug 

or medical device” in relation to “foreseeable “therapeutic benefits.” Therefore, if the ML 

warning does not in practice provide an appropriate risk-utility test to the physician it 

would render the ML medical device defective. It appears that also in this respect, a ML 

medical that can provide explanations/confidence intervals for the predictions made 

could fulfill the requirements of a risk-utility test even under Restatement (Third) §6(c).  

 

                                                       
442 Id. at, 180. 
443 Michael D. Green, Prescription Drugs, Alternative Designs, and the Restatement (Third): Preliminary 
Reflections  30 SETON HALL L. REV. 207, 208-209 (1999). 
444 GEISTFELD, Principles of Products Liability 180. 2011. 
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h. The correlation between warnings and malfunctioning  

 

As we noted above, identifying an adequate warning for ML medical devices would also 

in certain cases shield the manufacturer from allegations concerning ML malfunctioning. 

Restatement (Third) of Torts § 3 comment b provides explanations on what constitutes 

malfunction. It states that: 

 

“…when the incident…is one that ordinarily occurs as a result of product defect, and 

evidence in the particular case establishes that the harm was not solely the result of causes 

other than product defect existing at time of sale, it should not be necessary for the 

plaintiff to incur the cost of proving whether the failure resulted from a manufacturing 

defect or from a defect in the design of the product…the inference [could be drawn] that 

the product was defective whether due to a manufacturing defect or design defect. Under 

those circumstances, the plaintiff need not specify the type of defect responsible for the 

product malfunction.”445  

 

In other words, the malfunction is sufficient proof of defect.446 As indicated in 

Restatement (Third) of Torts the malfunctioning mainly results from manufacturing 

defects. From this perspective manufacturing defects “cause the product to fail to perform 

their manifestly indented functions.”447 Thus, the malfunction doctrine is limited to 

“situations in which a product fails to perform its manifestly intended function.”448 

Consequently, in the case where a ML medical device delivers a misdiagnosis the 

allegation could be that the product did not perform its “manifestly intended function” 

constituting a product malfunction that subjects the manufacturer to strict products 

                                                       
445 RESTATEMENT (THIRD) OF THE TORTS: PRODCUTS LIABILITY § 3 cmt. b. 1998. 
446 Geistfeld, CALIF. L. REV., 1635 (2017). In this respect see also Denny v. Ford Motor Co., 662 N.E. 2d 730, 
(N.Y. 1995). In this case was held that “[t]he cause of action is one involving true "strict" liability, since 
recovery may be had upon a showing that the product was not minimally safe for its expected purpose--
without regard to the feasibility of alternative designs or the manufacturer's "reasonableness" in marketing 
it in that unsafe condition.” 
447 RESTATEMENT (THIRD) OF THE TORTS: PRODCUTS LIABILITY § 3 cmt. b. 1998. 
448 Id; see also Geistfeld, CALIF. L. REV., 1634 (2017). 
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liability.449 However, Geistfeld450 notes, such conclusions are debatable as the rule 

adopted by Restatement (Third) of Torts “is not ideal, which reflects the difficulty of 

formulating a concise, general statement of the principle.”451  

 

Be that as it may, Geistfeld points out that even if the malfunction doctrine were more 

rigorously defined, manufacturers would still be subjected to significant uncertainty for a 

different reason.452 A considerable majority of states instead of defining malfunction on 

the basis of the product’s “manifestly intended function” they evaluate this issue with the 

“consumer expectation test.”453 Particularly, in the context of artificial intelligence, the 

consumer does not know what to expect from AI medical devices hence why the 

manufacturer should “adequately warn about the associated risks.”454 Geistfeld argues in 

the context of autonomous vehicles, which could mutatis mutandis be also applicable for 

ML medical devices, once satisfying the obligation to adequately warn about the 

foreseeable risk of crash that is unavoidable or inherent in a safely designed autonomous 

vehicle, the manufacturer will also escape liability for such crashes under the malfunction 

doctrine.455 The idea behind this reasoning is that an adequate warning about the inherent 

risks of crash (revealing the true character of the product) cannot frustrate the consumer’s 

expectation in the event that the risk materializes thereby excluding liability under the 

consumer expectation test and consequently under the malfunction doctrine.456 

Therefore, in the context of ML medical devices, one may argue that providing an 

adequate warning in the form of appropriate explanations and/or a confidence interval 

for the prediction made, would avoid frustrating the consumer expectation in the case 

where an associate medical risk materializes. Consequently, such a warning could in 

principle also exclude liability under the malfunction doctrine. 

 

                                                       
449 Point raised in the context of autonomous vehicles by Geistfeld, CALIF. L. REV., 1637 (2017).; this point 
could be also applicable to ML medical devices.  
450 Id. 
451 David G Owen, Manufacturing Defects, 53 SCL REV. 851, 883 (2001). 
452 Geistfeld, CALIF. L. REV., 1637 (2017). 
453 Id. at, 1638. 
454 Id. in the context of autonomous vehicles. 
455 Satisfying the duty to warn does not necessarily satisfy the duty for a non-defective design (see id. at, 
1639.). 
456 Id. at, 1639-1640. 
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However, particularly, when it comes to products that have a primary purpose of 

promoting health or safety (e.g. donated blood or blood products), the sheer fact of injury 

could be adequate for establishing a malfunction subject to strict liability.457 The 

argument would be that such blood products or ML medical devices are not marketable 

with their true character known hence making it defective.458 Consequently, 

manufacturers of ML medical devices, like sellers of contaminated blood, could be 

vulnerable to strict products liability under Restatement (Second) for the inherent risks 

in ML medical predictions or contaminants in blood accordingly. It is at this point where 

Restatement (Second) of Torts § 402A cmt. k could provide a solution to such cases 

including malfunctioning ML medical devices. 459  

 

We have seen the scope and application of comment k when we discussed design defects. 

To briefly recapitulate, under comment k “unavoidably unsafe products” are exempted 

from strict liability.460 Comment k states that that the seller of “unavoidably unsafe 

products” that are “properly prepared and marketed and proper warning is given” is “not 

to be held to strict liability for unfortunate consequences…merely because he has 

undertaken to supply the public with an apparently useful and desirable product, 

attended with a known but apparently reasonable risk.” Drugs and vaccines are expressly 

referred to in comment k as examples of “unavoidably unsafe products” that could enjoy 

the protection provided by this exception. 

 

In this regard it should not be forgotten that the manufacturers of ML medical devices 

would still be subject to strict liability with regard to injuries arising out of products that 

                                                       
457 GEISTFELD, Products Liability Law 339. 2012. See for example in relation to the sale blood products where 
certain blood-borne diseases cannot be detected at the time of sale and other risks of contaminated blood 
cannot always be reduced to more ordinary levels (Geistfeld, CALIF. L. REV., 1671 (2017).). See also ruling of 
the Court of Appeal of California, First Appellate District Division One in Grinnell holding that “…it is 
clearly the law in California that the theory of strict liability in tort is available in cases where the vaccinated 
individual contracts the disease the vaccine was designed to protect against” (Grinnel v. Charles Pfizer & 
Co., 274 Cal. App. 2d 424, (Cal. Ct. App.).); see also Restatement (THIRD) of the Torts § 3 cmt. b providing 
that “manufacturing defects cause the products to fail to perform their manifestly intended functions.”     
458 In relation to marketing of blood Geistfeld, CALIF. L. REV., 1671 (2017).  
459 See in this regard supra Geistfeld’s analysis why the exemption from the rule of strict liability provided 
by comment k presumably concerns malfunctions of “unavoidably unsafe products” at id. at, 1670. and 
GEISTFELD, Products Liability Law 332-340. 2012.    
460 There is no provision similar to comment k in Restatement (Third); instead, it encompasses a special 
rule governing defective design of medical products (GEISTFELD, Principles of Products Liability 171. 2011.       
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were not “properly prepared” or no “proper warning” was given as in these cases comment 

k is not applicable.461 In other words, in order to obtain the benefit of comment k the 

defect should be corelating to a risk that cannot be sufficiently reduced by the exercise of 

reasonable care.462 These issues will maintain complexity as the allegation could be that 

comment k should not be applicable as the associated risk could have been sufficiently 

reduced by the exercise of reasonable care.463 For example, it may be argued that no 

reasonable care was exercised due the lack of adequate ML warnings and hence comment 

k should not be applicable to the allegation of ML malfunction.  Therefore, if warnings in 

the form of ML explanations for the predictions made in certain instances are considered 

as adequate warnings, then such warning would also allow for the application of comment 

k. Therefore, explainable ML/ML providing confidence intervals might be also shielding 

the manufacturer from allegations on ML malfunctioning.464 This is so, as comment k 

requires the product to be accompanied by an “adequate warning.”465  

 

12. Conclusion  

 

We have seen at the outset of this paper that sometimes, knowledge is incomplete or 

changing and this requires reasoning methods that can deal with uncertainty.466 Machine 

learning could be of particular use to these kinds of problems for which encoding an 

explicit logic of decision-making performs very poorly.467  

 

ML research in medicine already appears promising in providing unprecedented benefits 

to healthcare. ML medical systems would not only be applicable in the clinic but could 

soon be also directly used by patients outside the clinic without physician’s presence or 

                                                       
461 For example, in relation to blood products, in cases where there was inadequate sterile environment that 
contaminated the blood (Geistfeld, CALIF. L. REV., 1673 (2017).). 
462 For example, in the case of blood, HIV was undetectable when it initially contaminated the blood supply 
(see more detail explanations on these at id.). 
463 See similar question raised in relation to the hacking of autonomous vehicles by Geistfeld (id.).  
464 Where comment k is applicable, namely in relation to “unavoidably unsafe” products, manufacturers 
would not be subject to strict liability but would still be subject to ordinary negligence liability for these 
malfunctions (Geistfeld id.). 
465 GEISTFELD, Principles of Products Liability 186. 2011.  
466 FINLAY & DIX,  34-43. 1996. 
467 Burrell, BIG DATA & SOCIETY, 6 (2016). 
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examination. Considering that ML could provide substantial benefits to healthcare, 

circumspection is needed in choosing a legal framework governing ML in medicine. 

Similar to drug and vaccine manufacturers, a legal liability framework that subjects 

manufacturers of ML medical devices to excessive adverse litigation could undermine this 

ML promising potential in healthcare. At the same time, the potential impact of a ML 

medical algorithms on thousands or millions of patients also calls for circumspection in 

deploying ML algorithms in medicine. Such deployment should be subject to a legal 

framework that also ensures the health and safety of patients.   

 

In the context of drugs and conventional (not based on ML) medical devices, Geistfeld 

argued that it would be hard to find liability for defective design, as a drug or medical 

device would be beneficial to at least one class of patients.468 However, as he also points 

out “to make a proper prescription, the physician must have received the requisite risk-

utility information from the manufacturer. ‘With drugs therefore, the liability game is 

with the warning candle, not with design.’469”470     

 

Therefore, the crux of matter concerns the type of information that a manufacturer should 

be providing to the physician considering that the physician would be acting as a learned 

intermediary and considering that the manufacturer would be held to the standard of an 

expert in the field.471 The manufacturer should be providing information (warning) 

concerning the ML medical prediction to the physician in a manner appropriate for her 

expertise. After the physician is given an adequate warning appropriate for her expertise, 

she should then “translate” this information for the patient in her verbal explanation in 

order to obtain the patient’s informed consent.472  

 

As we have seen, there are distinct challenges in developing and deploying ML systems in 

healthcare. Furthermore, there are tradeoffs inherent in medical decisions that need to 

be explained by the physician to the patient in order to obtain the patient’s informed 

                                                       
468 GEISTFELD, Principles of Products Liability 180. 2011. 
469 Green, SETON HALL L. REV., 208-209 (1999). 
470 GEISTFELD, Principles of Products Liability 180. 2011. 
471 Point raised by Mark Geistfeld (NYU Law School) in a discussion we had on this subject 
472 Id.. 
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consent. Moreover, patients’ expectations of treatment outcomes might differ and 

different patient might be willing to take different risks. 

 

Therefore, identifying what constitutes appropriate warning for ML medical systems 

would create a constructive relationship between ML medical system (ML 

manufacturers), physicians and patients that would provide better healthcare and 

encourage the speedier development and deployment of machine learning in medicine. 

Additionally, developing this constructive relationship would shield the manufacturers of 

ML algorithms from uncertainty concerning their legal obligations that could be stifling 

machine learning innovation.473  At the same time it would provide better protection to 

the patient.  

 

It was argued that explainable ML (i.e. ML delivering certain types of explanations for its 

specific prediction) and/or delivering a confidence interval474 (i.e. ML indicating its 

certainty for a specific prediction), in at least certain instances, should constitute 

elements in warnings. This paper sets the foundations for this correlation between 

warnings, explainable ML and ML confidence intervals. The relationship between 

explainable ML systems/ML systems providing confidence intervals and warnings would 

be more extensively developed in further research that will complement this project. This 

correlation is based on the distinct manner ML systems learn and generalize.  

Explanations and confidence intervals for the specific predictions would allow the 

physician to consider the ML prediction, ML explanation, ML confidence interval and 

combine them with her medical judgment in order to assess the risks inherent in this ML 

                                                       
473 The European Commission stated in its Communication on Artificial intelligence for Europe that in order 
to fully benefit from the opportunities presented by these emerging new technologies a clear and stable legal 
framework will stimulate investment and, in combination with research and innovation, will help bring the 
benefits of these technologies to business and citizens. It is also noted that it is necessary to examine 
whether the current rules at EU and national level for safety and liability are appropriate and whether for 
manufacturers and service providers the legal framework continues to deliver an adequate level of legal 
certainty (see further European Commission,  2. 2018.). Similarly, Geistfeld points out in the context of 
autonomous vehicles which could be also applicable in the medical domain the rate at which the market 
converts from conventional autonomous vehicles depends on the price that consumers are requested to pay 
in order to adopt the new technologies. He indicates two reasons, where systematic legal uncertainty about 
the manufacturer liability raises the cost of an autonomous vehicle, thereby increasing the price and 
reducing consumer demand for these new technologies (Geistfeld, CALIF. L. REV., 1617 (2017).).   
474 The point on the confidence interval was raised by Rajesh Ranganath (Courant Institute of Mathematical 
Sciences, NYU) in a discussion we had on these challenges. 
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prediction. Thereafter, the physician would be able to “translate” this combined 

information to the patient. The patient would then be able to better comprehend the ML 

prediction allowing her to consider the inherent risks involved and make an informed 

choice whether or not to follow this prediction. As explained above, the ML device 

providing explanations for its prediction could be revealing hidden albeit foreseeable 

risks. Explainable ML and/or delivering confidence intervals could in certain cases make 

a ML warning in medicine genuinely “comprehensible,”475 “accurate and clear.”476 

                                                       
475 Pavlides v. Galveston Yacht Basin, F. 2d at 338. 
476 Martin v. Hacker N.E. 2d at 1312.  




